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ABSTRACT

Alm To assess the influence of land cover and dimate on species distributions
across Europe. To quantify the importance of land cover to describe and predict
species distributions after using climate as the main driver,

Location The study area is Europe,

Methods (1) A multivariate analysis was applied 1o describe land-cover
distribution across Europe and assess if the land cover is determined by climate
atlarge spatial scales, (2) To evaluate the impartance of land cover ta predict species
distributions, we implemented a spatially explicit iterative procedare to predict
species distributions of plants (2603 species), mammals {186 species), breeding
birds (440 species), amphibiar and reptiles { 243 species), First, we 1an bioclimatic
models using stepwise generalized additive models using bioclimatic variables,
Secondly, we carried out a regression of land cover (LC) variables against residuals
from the bioclimatic models to select the most relevant LC variables. Finally, we
praduced mixed models including climatic variables and those LC variables selected
as decreasing the residual of bioclimatic models. Then we compared the explanatory
and predictive power of the pure biodimatic against the mixed model.

Results (1) At the European coarse resolution, land cover is mainly driver by
climate, Two bioclimatic axes representing a gradient of temperature and a
geadient of precipitation explained most vadiation of land-cover distribution.
(2) The inclusion of land cover improved significantly the explanatory power of
bioclimatic models and the mast selevant varizbles across groups were those not
explained or pootly explained by climate. However, the predictive power of
bioclimatic model was not improved by the inclusion of LC variables in the
iterative model selection process,

Main conclusion Climate is the major driver of both species and land-cover
distributions over Europe. Yet, LC variahles that amahmd or weakly
associated with climate (inland water, sea or arable land) are interesting to
describe particular mammal, bird and tree distributions. However, the addition of
LC variables to pure bioclimatic models does not improve their predictive
ACCUTACY.

Keywords
Biodimatic modcls, climate gradients, land-use effects, large-scale patterns,
species distributions.

INTRODUCTION

is held to be true for species at a variety of spatial scales
{Whittaker ef al., 2001), although there is a wide Tecognition

Tt is widely accepted that distributions of plants and animals that the importance of climate is best expressed at large spatial
are broadly constrained by their physiological tolerances to scales (Ratibek & Graves, 2001; Willis & Whittaker, 2002}
climatic factors (Woodward, 1987, 1990), This generalization Feliowing this recognition, biodimatic models are being used
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to predict the distribution of plant and animal species at large
spatial scales (for a review see Guisan & Zimmermann, 2000).
However, bioclimatic models may produce inaccurate predic-
tions when important local or regional factors are missing
from irput data in the models (Iverson et al, 1999 Thuiller
et al., 2003b). As bioclimatic models assume species distribu-
tions to be at equilibrium with current environmental
conditions, they are bound to over-predict distributions of
species that are highly affected by human activities and that,
consequently, may be missing from potentially suitable areas
(Loehle & LeBlanc, 1996; Aratijo, 2003). This problem should
be particularly severe in rogions where a positive relarionship
between species occurrence and husman population density has
been reported (e.g. Araijo, 2003).

For example, in Europe, land use changes, in particular
agricultural intensification, have led to widespread changes in
the distribution and aburrdance of many different taxa (Benton
et al,, 2003). More specifically, rrumerous studies have revealed
how important land use and other human activities affect
mammal {Mladenoff et al, 1999}, bird (Chamberlain ef i,
1999), berptiles (Shenbrot ef al, 1991) and plant {Duckworth
et al., 2000) species distributions at regional scales.

As human management activities alter satural dynamics of
species within ecosystems, bioclimatic models are expected to
provide increasingly inefficient predictions of species distriba-
tions (¢.g. Aradjo et al, 200t). A possibility to compensate for
such human-induced factors is to include within-species
distribution models additional vastables expected te summar-
iz¢ important factors affecting local distributions of species,
The inclusion of these variables should be expected to improve
the accuracy of bioclimatic models (Loekle & LeBlanc, 1996;
Midgley et al, 2003). In this paper, we analyse the usefulness
of land cover {LC) variables to predict plant, bird, mammal
and herptile species distributions over Europe. We also
distinguish between the explanatory and predictive power of
land cover. Variables with high explanatory value help 1o
understand the determinants of species distribution, whereas
variables with predictive valug play an important yole for
mode} development without necessary being ecologically
relevant. Some variables can play bath roles, whereas others
are more orientated toward one role, The distinction between
both components bas thus serious implication in practice.

‘We address the following questions:

1. How much of land-cover distribution is explained by
climate?

2. How does fand cover increase the explanatory power of
biodimatic models at large spatial scales?

3. How does land cover increase the predictive power of
bioclimatic models at large spatial scales?

METHODS

Species data

Original species data included 2294 plant (Jalas & Suominen,
1872-1996), 186 mammal (Mitchell-Jores et al., 1999), 143

354

amphibian and reptite {Gasc et al, 1997) and 440 breeding
bird species (Hagemejer & Blair, 1997). Terrestrial vertebrates
include all known species (Aradje et al, 2001} whereas planis
cemprise only ¢, 20% of the European flora (Humphries et al,,
1999). The grid used is based on the Atlas Floraeac Europacae
(AFE; Lahti & Lampinen, 1999), with cells boundaries typically
following the 50 km lines of the Universal Transvers Mercator
{UTM) grid. The remaining atlases use slightly different grid-
systems, including different rules to represent data or islands
and coasts, Hence, vertebrate data were converted to the AFE
grid system by identifying unique correspondence between
cells in these grids (Williams ef al., 2000). The mapped area
(2434 grid cells) includes western, northern and southern
Europe, but exclude most of the eastern European countries
where recording effort was both less uniform and less intensive
(Williams et al., 2000}.

As plants are by far the largest including a great varicty of
responses, we divided them imie three life-form-based groups
according to Tutin et al. {1964-1993): herbs, shrubs and trees.

Bioclimatic data

We used a comprehensive set of bioclimatic variables for
analyses (T.D. Mischell, 2002, unpublished datz): mean
annual, winter aud summer precipitation, mean annual
temperature and minimum temperature of the coldest month,
growing degree days (> 5°) and an index of humidity (mean
ratio of annual actual evapotranspiration over annual patential
evapotranspiration). Mean values are averaged from 1960 1o
1990. These data were supplied on a 10" grid, covering Europe
and then aggregated by averaging to 50 x 50 km UTM in
order to match with the resolution of species data.

Land-cover data

The land-cover data were developed at a spatial resohution of
10 for grid cells based on the ATEAM project geographical
window (http://www.pik-potsdam.defatearn/). The 10 grid
cells were derived by aggregation from the PELCOM land-
cover data base. PELCOM is a [-km pan Euzopean land cover
data base developed mainly from remotely sensed data. The
classification methodology is based on a regional and integ-
rated approach of the NOAA-AVHRR satellite data and
ancillary information such as topographic features (Miicher,
2000}, Although finer spatial resolution data bases exist such as
CORINE {CEC, 1993), PELCOM was selected due to its
complete spatial coverage of the Euvropean window, and
because of the homogeneity of the methodology nsed for the
land-cover classification. PELCOM is also the most up-to-date
of pan-Enropear land-cover data bases.

The percentages of each land-cover class were calcutared
for the individual 10 grid cells from the 1 km PELCOM cells,
The data comprised four classes of [and cover: forest,
agriculture, wrban (perurban) and others. Farests were
further subdivided into three classes: percentage of decidu-
ous, coniferous and mixed forest (respectively named perdedi,
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perconi and permixf). Agriculture was also divided into three
classes: the percentage of arable lands, grasslands and
permanent crops (respectively mamed perara, pergrass and
prepermc). The “other’ land-cover class comprised: percent-
age of semi-natural areas {divided into areas of shrubland,
and barrenland, respectively named pershrub and perbarrent),
inland waters (perimwater}, wetlands (perwetland), permanent
ice and snow (perpice} and sea {persea). Similarly to dlimate,
we aggregated 10’ grid data in 50 x 56-km grid to match with
species data by calculating the percentage of each class in the
new grid system.

Model

Bioclimatic distribution of land cover in Europe

Given that climate governs global patterns of land cover (Dale,
1997), land cover and climate are not fully independent
Hence, before implementing predictive models of species
distributions we investigated patterns of co-variation between
land-cover and climate variables, This was performed with the
Outlying Mean Index (OMI), a co-inertia analysis recensly
developed by Doledec et al. (2000). This anatysis is similar to
the well-know canonical correspendence analysis (CCA: ter
Braak, 1986), but allows to separate land-cover classes and to
measure the distance between the mean bioclimatic conditions
used by each land-cover class and the mean bieclimatic
conditions across Europe. Moreover, unlike CCA, this method

Do lang-cover data improve biocimatic madels?

has the advantage of making no assumpticns about the shape
of land-cover response curves to the bioclimate. We applied
OMI to separate fand-cover classes in Europe by performing a
normalized PCA on the bioclimatic table and linking the land-
cover table to the PCA output table using the adequate
diagonal and metric matrices {Thutller et al, 2003c).

The first two selected axes explained 96% of the total inertia,
or variation in the data, The first axis was mainly related o
temperature and the second to precipitation (Fig. 1). Project-
ing land cover (LC) variables on the two-dimensional biodli-
matic space allows describing their distributions (Fig. 1). For
instance, permanent crops occurred mainly at cooler temper-
atures, whereas grasslands were mainly located in mid-altitude
mountains less intensively disturbed by human management.
However, some LC variables were found to be widespread
within climatic space. This was the case, for example, of
percentage of sea, inland water, arable lands, urban area or
coniferous forests (Fig. 1).

Given these patterns of co-variation between land cover and
bioclimatic variables, if we modeled species distribution with
both kinds of variables and with a stepwise variable-selection
procedure {Chambers & Hastie, 1997) we would rarely select
LC variebles as bioclimatic variables explains the most
important components of their distributions. However, LC
variables may still contribute significantly to model species
distributior in Europe when more regional patterns of LC,
corresponding to the residual part of the OM], may influence
distributions of particular species.

[Grow degres-day
ﬂ;ﬁ“ -

< temperature |
Mean of

Ilhe coldest month

Figure 1 Centre: Canonical weight of bio-
climatic variables and relationships with the
first $wo axes of the OME. Sides: Distribution
of land-cover variables on the first two axes
of the OMI analysis. Crosses identify the
position of the land-cover variables in the

SN
... |Winter precipitation | |

bioclimatic space using the canonical weights
of bioclimatic veriables. Ellipses reprasent the

land cover inertia representing at least 90% of
paints for each varizble. The dashed Lnes
emanating from the czntroids of each cllipse
represent the major and minor axes of the
ellipse. {% permenent crops 1)
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Rute of procedure

Table 1 Descriptive steps of the fterative
procedure

Step 1 Stepwise GAM using enly bioclimatic variables (GAM-clim)

Step2  Stepwise GAM on residuals from step 1 using only land-caver variables
Step 3 GAM using bioclimate vatiables retained in step 1 and land-cover variables retained

in step 2 {GAM-clim-L.C)

Step 4 Evaluation of GAM-clim accuracy on evaluation data using ROC curve

Step 5 Comparative aNova between GAM-cli and GAM-clim-lu (test}

Step 6  If test is significant: evaluation of GAM-clim-lu on evaluation data using ROC curve
Tlse, evaluation of GAM-dim on evaluation datz (same as step 3)

Step 7 Averaging of ROC curve from GAM-clim on all specics

Step8  Averaging of ROC curve from GAM-clim-la (3f test is sigaificant) and GAM-clim

{if test is not significant)

Including land-cover variables inte biockimatic models

In order to explore for the potential residual contribution of
land cover explaining current regional distributions of species,
we implemented an iterative framework (Table 1) based on a
particular tmpl ion of G lized Additive Models
{GAM). Here we first run stepwise GAM with bioclimatic
variables and then assessed if the inclusion of LC variables
improved the explanatory and predictive performarce of
bioctimatic models.

Original data were randomly divided into a calibration
(70%) and an evaluation (30%) data set. Species with more
thar 10 occurrences in the calibration data were selected for
model calculations (165 manmals, 117 herptiles, 387 breeding
bizds and 1527 plants remaining), Stepwise GAMSs were then
run using selected bioclimatic variables. Then we ran stepwise
GAM of residuals against LC variables. Selected LC variables
for each species were then added to the set of bioclimatic
variables to produce mixed bioclimatic models including land
cover. To assess the explanatory power of land cover,
comparative ANovAs were petformed between the pure
bioclimatic and the mixed madels. To assess the importance
of land cover as predictive variables a test of accuracy was
performed on the evaluation data using the relative cperating
characteristic (ROC} curve (Pearce & Ferrier, 2000; Thuilter
et al.,, 2003a). The ROC curve was applied to pure bioclimatic
models and to the mixed models. Subjective guidelines (Swets,
1988) suggest very good agreement for AUC above 0.9
(Table 1), All analyses were performed with Splus (Anen.,
1999},

RESULTS

How does land cover imprave the explanatory power
of biodlimatic models at a large spatial scale?

The inclusion of land cover increased the explanatory pewer of
bioclimatic models for species of all groups {Table 2). This was
particularly true for mammals, birds and irees, where the
inclusion of land cover increased the explained deviance of
bioclimatic models by more than 60%.
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Table 2 Explanatory power of land-cover variables. Number of
species corresponds to the number of species studied in this
analysis. Step 2 corresponds to the number of species where Jand-
cover variables were retained as decreasing residuals of bioclimatic
models (step 2, Table 1). Step 5 corresponds to the number of
species for which mixed models had a higher explained deviance
than pure bioclimatic models (step 3, Table 1), Percentage cor-
responds to the percentage of cases where the inclusion of land
cover increased the explanatory power of bioclimatic models

No. of species Step2 " Step 5 Pereehtage

Mammals 165 152 107 65

Birds 587 377 241 62
Trees 7 71 s 61
Shurbs i . 43 7 55
Herptiles 117 e | & s
Herbs 1378 1265 624 45

1o order to explore the additional effects of land cover after
biodimatic models have been adjusted, we selected a few
species with established relationships with land cover at lower
spatial scales. This was the case for wolf Canis lupis, whose
populations are known to be inversely correlated with human
population and activities (Breitenmoser, 1998; Massolo ¥
Meriggi, 1998). In our analysis, the LC variables retained for
this species were percentage of urban areas and percentage of
grasslands, The response curves to these two variables were
exponential negative and linearly negative, respectively, show-

* ing that even at large spatial scales important EC variables can

be detected by models. Overall, the three LG variables most
often retained by models for mamimals were the percentages of
arable land, permanent crops and mixed forests {Fig. 2,
mammals). For birds, we analysed models for the grey
partridge Perclix perdix. Robinson ef gL (2001} showed that
the grey partridge has declined in Britain as & consequence of
the intensification of agricultural practices and the decrease of
available arable land. In support of this study, our analysis
selected arable fand as the most important LC variable for the
species (Table 1), More generally, the inclusion of the
percentage of zrable land into models of distributions for
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Figure 2 Percentage of madels using sach land-cover variable as
one of the first three land-cover variables selected in step 2 for
decreasing the residuals of pure bioclimatic modets. Dark grey,
grey and clear greys bars vepresent, respectively, the most, the
second most and the third most explanatory selocted variables
during the process for each group of taxa.

farmland birds increased significandy the explanatory power of
models. As a whole, agriculture (percentage of arable land and
permanent crops) and presence of sca were the most important
LC variables accounting for residuals inn bird distciations
{Fig. 2. birds). For trees, we Focosed on Quercus pefroes, a
Euro-Siberian species with wide distribution (Tutin et al,
1964-1993), The only selected LC variable was the percentage
of deciduous forest, with a strong positive relationship. This js,
indeed, a deciduows tree dominant in central European
deciduous forests, Another example is Q. pedunculifora, which
was negatively correlated to permanent crops and positively
related to the percentage of shrublands. For trees, in general,
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thete wers Do unequivocally dominant LC variables explaining
residuals, although presence of sea, inland water and shrabs
appeated often as useful to axplain distrbutions (Fig, 2,
plants—trees),

For herptiles and shrubs, the inclusion of land cover
increased the explanatory power of bioclimatic models for
more than half of the species (Table 2). Herptiles responded
mainly to percentage of deciducus, coniferous forests and
arable land (Fig. 2, herptiles), while shrubs were more related
o porcentage of sea, arable land and mixed forests (Fig. 2,
plants—shrabs). These observations are corststent with other
published records. For instance, Martin & Lopez (2002)
showed that the tizard Lacerte lepida occurred mainly ynder
Quercus forest and understorey low bushes and avoided
croplands. Here, the two retained variables were percentage
of mixed forest (positive relation) and permanent crops
{negative relation). For shrubs, we chose to investigate the
response of the piancer white willow Salix alba and found that
the percentage of arable land {positive relationship) was the
only additional variable selected for the species,

Finally, herbs were the group for which the inclusion of land
cover produced the least impravement over pure bioclimatic
models (Table 2). The most relevant variables selected were the
percentage of inland water, sez and shrubs (Fig 2, plants—
herbs). We focused on the woodland herbs group, which are
mainly correlated to percentage of deciduous and mixed forest,
For instance, the yellow anemone Aremone ranuncidoides that
typically occurs under beech forests (Tutin ef al.,, 1964-1993)
has a positive unimodal celationship with percentage of
deciduous and a negative relationship with mixed forests and
petmanent crops, The supesb pink Dianthus superbus, which
occurs principally under open forests (Tutin ef al, 1964—
1993}, was as expected. positively related to mixed forests and
negatively to arable land.

How does land cover improve the pradictive powaer of
biodimatic models at a large spatial scale?

The predictive power of models was assessed using AUC on
evaluation data, We concluded that models, on average,
provided very good results for all groups {(Table 3).

Shrubs and herptiles were the species best predicted by
models with an average AUC of 0.95 for evaluation. Con-
versely, mammals had the Towest (although still rather high}
mean AUC values with 0,914, The lowest values of AUC were
generally comprised 0.66 and 0.80 while maximum values of
AUC were equal or very close to 1 {Table 3},

Predictions using bioclimatic and LC data showed very
similar results to predictions using bioclimatic data alone.
Although there were no significant differences between AUC
for both analyses, some general trends can be outlined. First,
the averall minimum AUC was generally higher {but not for
trees) for models using LC data than for models that did not
use it {Table 3}. Secondly, standard deviations of AUC for
models using bioclimatic and LC data were lower than for
maodels using only bioclimatic variables (Table 3), The last two

357

W. Thuiller et al,

Table 3 Statistical summary of AUC from the ROC curve procedure displaying the standard deviation ($D), the minimum (min), the
average (mean) and maximum {max) for each group according to the models (bioclimatic model agninst mixed including {and-cover
variables), Difference correspond to the net difference between mean AUC from bioclimatic and mixed models

Bioclimatic model Mixed model
8D Min Mean Max s Min Mean Max Difference

Herptiles

Cali 0.0467 5.2017 0.5573 0.993% 00413 0.809% 0.9627 0.9999 —0.0054

Eval 0.0505 6.7791 0.5457 09988 0,0487 0.7933 0.9502 0.9988 —0.0007
Mammals

Cali '0.0582 0.7457 0.9277 0.9992 G.0522 0.7812 29358 0.9992 =0.0081

Eval 0.0632 0.7267 0.9140 0.9587 0603 7552 0.5133 0.9975 0.0067
Birds

Cali 0.0459 0.7853 0.9388 0.9990 0.0421 0.8227 09447 05950 —0.005%

Eval 0.0525 0.7592 0.9254 09380 00512 0.7592 0.9260 0.9980 =~0.0006
Herbs

Cali 0.0£19 0.7341 0.9568 10000 0.041% 0.7341 09567 1.0000 0.0001

Eval $.0503 0.6628 0.9313 L0gHo 0.0503 0.6628 0.9313 LOODO 0.0000
Shrubs

Cali GO314 0.8692 0.9708 1.0000 0.0256 0.8950 0.9743 1.000G —0.0035

Bval 0.0421 G.8041 0.9530 LOOOD 0.0406 0.8046 0.9538 100003 —0.0028
Trees

Cali 0.0277 0.8950 05642 0.9933 0.0327 0.8482 0.9615 0.9993 0.0027

Eval 0.0347 0.8188 0.9436 1.0000 0.0384 0.8136 D941 1.0000 0.0032

points support the idea that the inclusion of LC variables may
help improve predictions for species where bioclimatic models
yielded poorer predictions,

Amongst the examples provided, there is no species for
which the inclusion of land cover increased significantly the
predictive accuracy of bioclimatic medels. However, land
cover improved bioclimatic madels (on evaluation data) only
for 2 fimited number of species: 34% of mammals, 40% of
herptiles, 34% of birds and 21% of plants. Animals appezred to
be more related to land cover, but differences between AUC on
evaluation data are too narrow to draw clear conclusions on
the benefis from including land cover to predict animal species
distributions at large scales.

DISCUSSION

Distribution of Jand cover in Europe

The OM! multivariate analysis of environmental data revealed
that, over Europe, the spatial variation of land cover is highly
correlated to spatial variation among bioclimatic variables.
‘This is an importans result given that it explains why including
both types of information into specics distribution models may
bring redundant information, The degree to which this is the
consequence of the large spatial scate and coarse resolution of
data remains urknown, but it is possible that models of species
distributions using a smaller spatial extent and osing finer
resolution data might produce a different pattern (Frankiin,
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1995; Collingham et al, 2000}. Indeed, a hierarchical scheme
of environmental controls on species distributions has been
suggested (but not demonstrated), in which climatic variables
are large-scale determinants, followed by geology, kand cover
and topography, which moderate many of the effects of
r limatic variables {Franklin, 1995}, In our analysis,
althongh a large proportion of the vaziability of land-cover
distribution was described by climate, there were residuals
related to regional tand cover patterns that could not be
explained by climate. There were indeed some LC vaciables
either weakly or not related to climatic factors, such as inland
water, sea, arable land and conifetous forests. Sea is present
around a large proportion of Eurape and is obviously not
dependent on climate. Similariy to sea, in Europe, inland water
is not restricted by climate and is present across all regions.
Mote surprisingly the distribution of coniferous forests did not
appear to be influenced by climate. The reason for this s that
this class brings sogether a variety of species with a large range
of climatic and ecological requirements, which makes it
difficult to find a general pattern (Richardson, 1998). For
instance, the Pinus genus is present in the Siberian plains
{(Pinus sibirica), in the Alps mountains (P. cembra), in
restricted areas of the Mediterranean region (P. halepensis)
and in the Buro-Siberian segion (P. syfvestris). Such a variety of
cherotypes explains why the comifer distributions do not
appear to be controlled by climate in our analysis, although the
species making-up this class are indeed related to climate at
Eurcpean scale (Richardson, 1998). Arable lands occur across
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the whole of Europe mainly because this class embeds adequate
lands suitable for agriculiure independently of the type of
cultires.

These widespread LC variables that are little related, or even
unrelated, to climate at the European scale are, however,
influenced by multiple regional or local factors such as soil
type, slope, aspect or groundwater distribution and availabilicy,
that were not taken into account in our analysis.

Explanation of current species distributions

As widespread LC variables are not restricted by climate, it
was not surprising to find that they were often retained by
GAM models {Table 1, step 2), and decrensed significantly
the residual from pure bioclimatic models for many species.
Arable lands and permanent crops improved significantly the
explanatory power of bioclimatic models for several breeding
birds and mammals. Our results corroborate previous
studies showing the importance, positive or negative, of
arable land for birds, mammals and plants from regional to
local scales {eg Robinson eral, 2001; Robinson &
Suthertand, 2002; Benton etal, 2003). These authors
showed that the intensification of agriculiure and the
contraction of arable cultivations have produced important
local extinctions of birds and mammals (Robinson et al,
2001}. Our study emphasized that even at large spatial scales
and coarse Tesolutions, human-related variables could be
usefit to describe and explain species distributions
(e.g. Perdix perdix).

However, our approzch is omly correlational and the
ecological meaning of the observed relationships between land
cover and species distributions is not always ebvious. Although
bioclimatic models identify correlational relationships, there
have been a number of studies investigating causal relation-
ships between species and bioclimatic variables (at least for
plants} (Woodwazd, 1987, 1992). This kind of analysis has not
been developed, as far as we are aware, for species and tfand
cover at large spatial scales. The causal relationships between
variables such as !fand cover and species distributions are not
always easy to uncover since they are often indirect. This is the
case for plants as land cover can be seen more as a limiting
factor {at least for human-oriented variables} than a factor
having direct physiological impact. However, for vertebrates
the relationship can be more direct, For instance, high quality
habitats for winter farmland birds (stubble, game cover and
game feedezs) occur principally in arable lands (Benton ef al.,
2003). Granivorous passerines and small rodents are obviously
strongly refated to permanent crops and arable land where they
find refuges and food.

Prediction of species distribution ranges

From a predictive standpeint, LC variables did not improve
significantly the predictive performance of our models built on
evaluation data. Several non-exclusive hypotheses can be
proposed to explain this pattern:
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(1) Goodness-of-fit does not make an assessment of predic-
tive performance (although their failure underscores aspects of
the relationship between the modelled species distributions and
the explanatory variables used in the model) (Hosmer &
Lemeshow, 1985}, Even if some LC variables improve the
explanatory power of bioclimatic models, this does not imply
that they would also improve the predictive performance.

(2) Climate explains almost all LC variation and the
tesiduals are not large emough to improve the predictive
performance of biockimatic models. The residuals of the
climate-LC relationships may bave a strongly regional distri-
bution and therefore do not previde a strong underlying
gradient affecting species diswributions. Hence they may not be
relevant for predictive purposes.

{3) In modelling species against bioclimatic variables it is
often assumed that variables can be grouped into three
important groups: direct, resources and indirect variables
(Austinn & Smith, 198%). Direct or resource gradicots provide
mechanistic and physiological explanations for distributions of
species. Models that use such variables are supposed to have
greater predictive performance than models using indirect
variables, hence they should be more accurate when predicting
distributions over large areas or at other times in the future
(Guisan & Zimmermann, 2000). Indirect variables, such as
land cover, are supposec to have litle direct physiological
relevance for species. Hence they should only be applied within
a limited geographical extent without significant errors,
because in a different region, or time, the same LC variables
can correspond to a different combination of direct and
resource gradients (Guisan & Zimmermann, 2000}

(4) Using the 50 x 50-km grid cell resolution across Extope,
we demonstrated that 1LC distribution was driven mainly by
climatic gradients. However, inside each grid cell there is an
undetlying high heterogeneity of LC that is lost (see the
PELCOM data base}, while this heterageneity is a crucial factor
for predicting current species occurrences (Cowling &
Lombard, 2002; Benton et al., 2003). This constrain by the
data combines two potentizl problems. First, the problem of
using data with insufficient resolution to explain observed
patterns (Robinson ef al, 1992; Pearsor, 1993). Secondly, the
possibility that LC variables used may not include all relevant
factors, For example, variables representing the indices of
agricultural intensification (Mader, 1984), habitat heterogen-
city {Bascompte & Selé, 1996; Allen & O'Conxnor, 2000; Gaston
et al, 2002), frequency and intensity of perturbation
(Croonquist & Brooks, 1993), density of roads (Mader,
1984) could be more relevant to improve the predictive ability
of bioclimatic models for seme species, even at a 50 X 50-km
resolution.
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