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ABSTRACT

We compiled three independent data sets of bird species occurrences in northeasiern
Colorado 0 test how predicted species richness compared to a combined analysis using
all the data. The first data set was a georeferenced regional musetn data set from two
major repositories — the Denver Museum of MNature, and the Science and University
of Colorado Museum. The two national survey data sets were the Breeding Bird
Survey (summer), and the Great Backyard Bird Count (winter), Resulting analyses
show that the muscum data sets give richness estimates closest 1o the combined data
set while exhibiting a skewed abundance distribution, whereas survey data sets do
not accurately estimate overall richness even though they contain far more records.
The combined data set allows the strengths of one data set to aupment weaknesses in
others. It is likely some museum data sets dispiay skewed abundance distribinions
due to collectors’ potentially self-selecting under-represented species over common
ones.
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INTRODUCTION

A major argument for the utilisy of natural history museums in
the 22st century is that, taken in tota, they contain one of the
best sources of information on past and present biodiversity
(Krishtalka 8 Humphrey, 2000; Suarez & Trutsui, 2004), However,
there are still burdles to using this tmge reserve of informarion.
One challenge has been preparing musenm daze for use in eco-
logical analyses. Over the last 10 years, advances in compting
and data sharing over networks have led to solutions to soma of
the problems of digitizing, georeferencing and distributing data.
In the immediate fisture, we anticipate a flood of museum data
to be available 1o users worldwide over the Internet (<http:ff
www.ghiforg> for an existing portal 30 millions of records).

As these data become availzble, two cracial problems
need to be addressed. The first is determining if data from
natural history collections adequately predict species richness
(Meier & Dikew, 2004) for a given region, even if ixany records
are available. Natural history collections are ad fiog data sers that
have developed from efforts of multiplé collectors over fong peri-
ods of time. Even with potentially billions of specimen records
available worldwide, questions remain; are the data resolved and
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utibiased encugh (Soberdn ef al, 2000) 1o be an apprapriate
sample at the spatiat aud temporal scales of interest? Even if it
a2ppears that museum data provide good estinzates of species
tichiness, do they match species richness estimates from more
systematically collected data sets?

If museurn data provide useful estimates of species richness,
the second problem is how best o use this infermation te exam-
ine bicdiversity and its relationship 16 environmental change.
Species richness can be compared to ecological nuil models
{e.g. the mid-domain effect; Colwell er at., 2004) and correlated
with spatioternporal envi | parameters. Co ity level
measures of biodiversity can be used to infer past biegeogtaphical
patterns. A major strength of natural history collections is the
potential to determine change in species richness through time,
especially at regional and continentat scales,

In this study, we compare and combine independent sources of
bird species occurrence for a region of the Southern Rociies

(Fig. 1}, We have chosen to examine bixd species richness in this-

region for three reasons, First, birds are a diverse group {e.g.
Cuerto & Casenave, 1999; Rahbek & Graves, 2001} especially in
this region, and distributions likely reflect undetlying past and
present environmental faciors. Second, bitds are one of the few

DOl 10.11114.1366-9516.2005,00164.x 349

R. Gurainick and J. Van Cleve

b |ARCHivUM

5./

S

———

Tt rraaagg,

AN

g ]

Figure 1 Stady region and distribution of
records for MAPSTED], BBS, and GBIC. The

grid cells {fine black lines) in this figure are

25 ke wide. Broken grey lines represent major
roads, and the solid grey knes are the BBS
routes. Each small square marks the location

s

ofone MAFSTEDI museum record; circles mark
BBS route stops where observations are taken,
and triangles mark zip code and city region
centroids where GBBC records were grouped

together. Both MAFSTEDT and GBBC records
are clistered around the Front Range

groups where muitiple independent data sets on species richness
are already available.

We wtilize four data sourges to examine species richness in the
study area; two from regional museams and two from national
observational surveys. The museum-based data set represents the
combined species occurrences from the University of Colorado
Museum (UCM) and the Denver Museum of Natire and Science
{DMNS), The two observational data sets are independently
collected set5 of observations from the Breeding Bird Survey
(BBS) and Greater Backyard Bird Count (GBSC).

The museum and cbservational survey data sets incorporate
different strategies for samplivg diversity. The museum collec-
tions represent a set of lony-term and heterogeneous approaches
to sampling that often focus on capturing total diversity rather
than actual abundance distributions, The Breeding Bird Survey
(BBS, <bttp://www.nip2-pwre.usgs.govibbe/>) is more systermatic
in its approach to surveying bird species occurrence {Boulinier
et al., 1998) and has been used elsewhere for estimates of regional
and continental species richness {Boulinier et al, 1998; Nichels
et al., 1998; Car ef al, 2600; fones ef al., 2000). Each summer for
almost 40 years, voluateers have followed well-defined survey
routes by car, stopping at 0.5 sile increments to do 3-minute
peiot countsby eye and ear, before travelling to the next interval,
The data are thea sumsmatized ir: five segments of 10 stops each
across the routes. For more details on sampling strategies and
issues with the BBS see Boulinier of al. {1998). The GBBC is
another observational data set collected from volunteers,
but is less systematic than the BBS. Birders record species
observarions in their backyards and local areas during a 4-day
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Metropolitan regions, and MAPSTED] records
show sarue clustering around major roads.

period in Febriiary, and summary results are made available fo
users online (<htip://gbbe.birdsource.org>). Taken together, the
Bi3S and GBBC record occurrences for both summer (BBS} and
winter (GBBC), Data from the Christmas Bird Count {CBC},
another national survey, has 2 minimum 24-km errar, and was
censidered too imprecise 1o utilize.

We also compiled a separate mamunalian species occurrence
data set for the same study region from the UCM and DMNS
collections and from the Mammal Networked Information
System {MaNIS, <http://elib.cs.berkeley.edu/manis/>, Stein &
Wiecrorek, 2004). MaNI$ is a database portai to multiple United
States museum mammal collections providers. We compiled this
museum-oaly data set in crder to compare patterns of abundance
in a taxonomic group with lower richness against results from
the avian data set, Collections of species rich taxa might mis-
Tepresent abundances of common species in order to maximize totl
species coverage. Also, one could expect a difference in collection
strategy between the two taxa to result in a more balanced
mamnzal abundance distribution and skewed bird abundance
distribution or vice versa.

To summatize, the main questions we will address ave:

1 Taken separately, do the museum data soutces and the obser-
vational data sets give similar estimates of species richness over
the whole study region, 1. do the data sets sample the same set of
species? Docs the spatial samplé size, or grain size, affect richness
estimates?

2 Dothe accumulation carves for each data set appearto reach their
asymptotest An accamutation curve that plateaus does not imply
that the underlying data set is well-sampled and Tepresentative of
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the whaole region; rather, it only implies that the data set well
represents @ subset of datz defined by the limits and biases of
the'sampling methods used to collect the data set. Based on our anu-
Iyses, what ate these biases in the data sets inferms of raze versus
" abundant species? i
3 [fthe data sets are combined, are estimanes of bird species richness
for the region similar to estimates generated from any one datn set
alone? Do accumulation curves for ihe__eqn}fbiﬁed data set reach an
. asymprote; indicsting s Hegligible retuen for more sampling effort
using the combined collecting strategies? Which data sets have
the most effect on the observed patterns in the combined data sef?
4 How tikely are biases in other muaseum date sets? Do patterns
seet: in the musenm data sets for Aves appear consistent with a
compiled data set of mammalian records for the region?

METHODS

Spatial extent

The spatial extent was defined as a square region 250 km long
on each side encompassing 62 500 km” of the sourhern Rocky
Mountains and adjacent foothills and plains regions. The bound-
aries, major cities and sampling efforts for diffcrent data sets are
shown in Fig. 1. Using the Environmental Systems Research [nstitute’s
(ESKI) arcmar deskrop version 8.3 (2002), the study region
was divided into grid cells of different sives: 10 10 km, 16,67 X
16.67 kaw, 25 % 25 km, and 50 x 50 km. Occurrence records were
lnaded into ARGMA? and transformed inlo point records based
on their geographical location.

Data set preparatioh

For each data set, the following steps were employed o convert
the records into a form usable for species richness estimates:
(1) geaspatially precise raw species owurrence data for the region
were accumulated; (2) data were validated by verifying accepted
raxonomic names of the species and removing spucious records;
{3} spatial annotatior and reformarting of the data were performed,
and the data exported ta species richness calculation programs.
Additional information on data set preparation can be Found
under ‘Snpplementary materiat’ Both the UCM and DMNS
records were digitized and georeferenced (Newfeld ef al., 2003;
Murphey et al., 2004) and made available as part of the biodiversity
informatics (MAPSTEDT {moeunisins and plains spatio-
temporal database informatics), <http:/fmapstedi.org>). As records
from both of these museum data sets were downloaded from
<http://mupstediorg> and combined tito one, this will be referred
to as the MAPSTED! data set.

Species richness estimation

Species richness estimation methods are usually grouped into
three categories (Colwell & Coddington, 1994): fiiting curves to
species accumnlation functions, parametric models of relative
abundance, and non-parametric estimators based on rarity. A
collection of the maost common of these was used to assess species
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richness. We did nat subject the mammal data set to such estim-
ates, but did plot the relative abundance distribution.

The curve fitting model used was the Michaelis-Menten
equation {Raaijmakers, 1987; Cotwell & Coddington, 1994),
and the asymptote was cal¢ulated using the MMMean estim-
ator in ssTimaTEs {RK. Colwell, versions § and 6, <btype/f
vicexoy.eebuconn.edu/Estimate$>>, 2000}, The relative sbundunce
distributions used were the continuous log-normal (Preston, 1548}
Poissan log-normal (Bulmet, 1974}, and log-series (Fisher eral.,
1943). Parametric abundance distributions were fit to the data nsing
the statistical computing environment ® {version 1.5.0, <http:f/
wiwrw.t-project.org>, 2004}, The continuous log-nombyal was fit
using the » function, prestondiste in J. Oksanen’s Vegan package
(version 1.6-3, <bttpi/fec.oulu.fit-jarioksalsofthelphvegan htmbs,
2004). The Vegan package finction fisherfit was used to fit the
{og-seties. Fitting the Poisson log-normal required building a
custom R subroutine to evaluate Poisson log-normal probability
functions and vsing the firdistr function available in the MASS
package (Venables & Ripley, 2002). Data were plotted on a Jog,
scale where each abundance class, or ociave, represented 1,2, 3—
4, 5-8, ... occurrences (Fig. 2). Predictions from ail three para-
metric distributions were compared o empirical abundance
distributions by gathering data in Jog, octaves and computing
Pvalues using a chi-squared test. Small P values suggest that the
null hypothesis, namely that the erapirical and parametric distribu-
tions are the same, can be rejected.

Noen-parametric estimators are abundance or incidence-based
and were developed to estimate the nuniber of species in a random
sample from a single population (Cotwelt & Coddington, 1994). It
is important to note that museum data do not constitue 2 andom
sampie and are gathered from muitipfe populations. Nonetheless,
we use these methods inthe hope that they can provide some usefinl
information when applied to collections data. Abundance-based
estimators use the relative abundance of each species in the whole
sample to estimate species richness. Theabundance-bised estimators
employed were: Chaol {Chao, 1984) and ACE (Abundance-based
Coverage Bstimator) (Chac & Leg, 1992; Chac et al, 1993), Incidence-
based estirators wse the relative rarity and commenness of
species in subsamples of the compleie sample to estimate richness.
Estimators of this variety used in this study were: bootstrap
{Smith & van Belle, 1984, first and second order jacklmife { Jackl
and Jack 2, Burmham & Qverton, 1978, 1979; Heltshe & Forrestes,
1983; Smith & van Belle, 1984), Chao2 (Chao, 1987}, and ICE
(Lee & Chao, 1994), Non-parametric estimation was performed
using ESTIMATES with 180 randamizations of sample order.

Species-area QUrves

Using grid cells of equal area allowed generation of species—area
curves frome she data. The shape of these curves can reveal char-
acteristics such as habitat heterogeneity (Rosenzweig, 1995) and
provide a basts for comparing the data sets used in this study with
others found in the literature, Following Rosenzweig’s recom-
mendations (1995), sampling was done using contigoous, nested
subplots. One thousand random nested subplots were created
{details in ‘Supplementary material’}, and the number of species
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Figure 2 Relative abundance distributions
plotted on a log,, or octave, scale, Panel

{a) displays MAPSTEDI data (b) BSS data
() GBBC <atz (d) combined MAPSTEDI-
BBS-GBBC data, and (€} MAPSTED]-MaNIS
marmmal data. Fitted pararmetric abundance
distributions are plotted on top of the
empiricat data. The solid line represents the
log-serjes, the dotted line represents the
continuous log-normal and the broken line
represents the Poisson log-normal. The

P vatues are listed alongside sach plot for
each distribution. The only data set clearly
displaying a mode to the right of the ficst

.| Pualua octave is the BBS. The MAPSTEDI, combined,
35x10% {8}  and MAPSTEDI-MaNIS data setsali have peak
18 %107 abundances in the first octave and smaller peak
045 abundances in later octaves. This pattern is

reflected in log-saries P values that are at least
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was catculated for each subplot and averaged over the 1000
arderings to create empirical species-area plots. The curve para-
aeters were estimated in s1GMapLOT using ron-linear regression
{Rosenzweig, 1995).

RESULTS

Spatial biases in data sets

Spatially referencing all records revealed a strong bias towards
collecting along roads and areund major pepulation centres (Fig, 1).
The BES survey design builds in roadside bias, while the tendency
of collectors to remain on roads for accgss explalns the bias in
MAPSTEDA records {e.g. Soberén eral., 2000). GBBC records show
less clustering around roads, probably as a result of the displacement
of records towards their zip code or ity centroids (see Supplerental
materials and Methods). Both GBBC and MAPSTEDI data cluster
near the beavily popufated Front Range regicns. BBS routes, on
the other hand, are fairly evenly distributed by design.
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four orders of magnitude larger than P vales
for either the continvous or Peissen log-
normal for each of those three data sets.

Observed species numbers and sampling effort

Observed species richness (5} and estimates for species rich-
ness from the four different grids and she four data sets are listed
in Table L. S,,, is highest in the combined data set (303 species)
followed by MAPSTEDI with 5y, of 247, BBS at 203, and GBBC at
174. Differences in the numbet of ocaxrrence records among
data sets are evident i accumulation corves (Fig. 3} The curves
for the BBS and GBBC are near their asymptotes, which indicate
that a moderate increase in sempling will reach the maximun number
of species observable under each set of sampling methodologies.
In comparison, the MAPSTEDI and combined data sets appear to be
far from their methodologically imposed sarmpling limits as their
curves continue to increase as all the grid cells are pooled,

Species estimator trends

Differences in estimated species richness between the different
grid sizes were small (Table 1) and species accumulation curves
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Tabie 1 Species richness estimator and species-area carve results. The parcent inarease is {estimarted valuesS, ) — (1) % $00] and in bold to

emphasize the overall difference in performance between data sets for each estimator. Percent relative error (% RE) is standard deviation of
estimator values for the four grids divided by S,

625 cells 225 cells 100 cells 25 cells Average
MAPSTEDI estimator ~ Value  %bincrease Value 9% increass Value  vhincrease  Value %increase Value % increase % RE
S 24600 246.00 246.00 246.00 246,00
ACE 29847 2121 28817 a1 298.17 2120 29817 2L21 298.17  21.2)
Chao § 309.62 2586 30962 2586 30062 2586 309.62 2556 30962 25.86
Bootstrap 27833 1315 279.85 1376 7920 1350 28070 1411 279,53 1383 0.35
Jack 1 378 2922 319.67 2995 3i%26 2978 31992 30405 31918 2075 0.32
Jack 2 359.80 46,26 35749 4532 36074 4664 35726 45.23 358.B2 4586 0.50
ICE 29749 2101 29884 2151 29950 21,75 30597 2438 300535 2216 131
Chao 2 32849 3353 319.03  29.69 32788 3328 32105 3051 32411 3175 168
MMMean 29327 1922 302.7y  23.05 30097 2235 333.33 34558 307.6% 25,05 6.25
Poisson log-normal 267.82 8487 267.82 8487 267.82 8.87 267.82 887 26782 887
Continuous log-normal  269.17  9.42 269,17 .42 269.17 942 269.17 942 6917 942
Log-series 246.00 0.0¢ 246.00 0.00 246,90 Q.00 246.00 0.00 246.00 0.00
Species—area curve 28465 758 26395 7.30 26572 802 263,60 715 26448 751 0.33
BIS
Sae 203,00 203.00 208.00 203.00 203.00
ACE 20594 145 205,94 145 20594 145 205,94 L43 205.94 145
Chao 1 20607 15t 206.07 i.51 206.07 151 206.07 181 20607  E51
Bootstrap 21284 485 21303 494 21497 550 21521 &0l 21401 542 053
Jack 1 22197 9.34 22192 9.32 2775 1219 22796 1230 22490 1079 Las
Jagk 2 22399 1034 22200 9.36 23479 1566 23601 1626 22920 1291 3.08
ICE 2492 587 21437 560 21968 322 21805 741 2676 638 LO8
Chao 2 21252 469 21157 422 21882 779 22004 844 U577 629 1.85
MMMean 20409 054 20597 1386 20942 336 21877 623 20966 289 212
Poisson log-normal 207.69 23 20769 231 207.69 231 207,62 231 207.63 241
Continuous log-normal 20690 1.9 206.90 152 206.30 152 20690 192 20650 192
Log-seties 203.00 0.00 203.00 000 203.00 000 203.00 0.00 202.00 0.00
Species-area curve 21203 445 211.83 435 21194 4.40 21054 372 215 423 0.30
GBBC
Sy i74.00 174.00 174.00 174.00 174.00
ACE 187.84 7.95 187.84 7.95 187.84 7.35 187.84 7.95 i87.84 735
Chao 1 18263 553 182.53 490 18253 430 1B2.53 450 132.81 546
Bootstrap 187.57 7.80 18346 8.31 18347 8.3z 189,61 8.97 188.53 835 0.42
Jack 1 20255 1664 205.86 18,31 205.68 18.21 20760 1931 20552 1812 0.36
Jack 2 21494 2333 20277 .03 22249 2787 2481 2920 22125 2716 2.16
ICE 20095 1549 20315 1675 20245 1635 202,15 1620 202.1% 1620 045
Chao 2 19874 1422 205.06 1785 205.06 1785 20711 19.03 20399 1724 181
MM Mean 162,99 £33 16694 406 7137 -151 18319 528 17112 ~L65 435
Poisson log-normal 186.03 6.91 186,03 6.91 186.03 831 186.02 6.9]1 186.03 691
Continucus log-normal  198.09  13.84 1989 1334 198090 1384 19609 13,84 19809  13.84
Log-series 17400 000 174.00 0.00 174.00 0.00 17400 0.00 17400 000
Species—area curve 18602 691 185.5] &.67 18549 6.61 18506 636 1B5.55  6.64 .20
MAPSTEDI-BBS-GBAC
S 303.00 303.00 303.00 303.00 305.00
ACE 33244 972 35244 972 35244 572 4t an 33244 072
Thao 1 33325 998 330.84 819 330.84 9,19 33084 9.3 33143 939
Bootstrap 32333 67 323.65 5,82 3M02 654 4062 714 323 6.90 0.16
Jack 1 34693 1450 34680 1446 34755 1470 34908 152 34759 1472 .30
Jack 2 35780 2142 3GL76 2038 36545  20.51 37032 2.2 38701 2116 072
ICE 34115 1259 33967 1210 339.08 1151 33840 1163 33958 12.07 033
Chag 2 35.09  13.89 33807 11.57 33839 1168 344,31 1330 34158 1274 114
MMMean 287.95 497 9268 341 300.56 081 LIV . 29874 -L41 an
Poisson log-normal 321,54 612 321.54 612 321.54 6.2 321.54 612 321.54 6.12
Continuoys log-normal 32673 11.13 33673 1113 33673 1113 BHF3 I3 33673 1113
Log-series 303.00 0.00 300 000 303.00  0.00 30300 000 303.00 440
Species—area curve 318.07 497 31727 471 317.52 479 3551 413 3709 465 Q.32
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Figure 3 Species accurmulation curves and estimated richness curves

for the 10 x 10 km cell grid (625 1otal cells). Coleman is the individual

based rarefaction curve and Sobs is the sample based rarefaction curve (s¢¢ Gotelli & Colwell, 2001 for a detailed explination of both types of
rarefaction curve). The BBS and GBBC data set curves neatly reach asymptote while the MAPSTEDI and combined data set curves are still

increasing when all samples ave added.

for each rid were nearty indistinguishable (see Fig. 3 for curves
from the 10 X 10 kin cell grid and ‘Supplementary material’ for
curves from the other grids). The non-parametric incidence
based estimators generally provided the highest richness estim.-
ates across the data sets. The estimator with the highest richness
values was Jack? averaging between 45% and 13% above S
{bold values in Table 1), Jackt provided the second highest estim-
ates, 30% 1o 1136 above 5y, except for the MAPSTEDI dara set,
where it was third, Chao? and ICE usually provided the third and
fourth highest estimates. The Chao2 and ICE estimates ranged
from: 32% 16 6% and 22% 1o 7% above Sa0 tespectively, On all
the data sets, the bootstrap produced low estimates, The results for
the abundance based estimators, ACE and Chaol, were mixed.
Chaol provided Jow estimates for the BBS, GBRC, and combined
data sets, 9% to 1% increase over Si while it gave a modesate
estimate of a 26% increase for the MAPSTEDI data set, The ACE
estimator followed a similar patters,

The species accumralation curve extrapolation estimator
MMdear: yielded moderate estimates with an average increase
of 25% over S, on the MAPSTED!I data set bt low estimates o the
others. MMMean estienated a 3% increase over 5. on the BBS

and actuaily averaged to a decrease below S,, for the GBBC and
combined data sets. This decrease below Sz, is likely due to a poor
fit of the Michaelis-Menten function to the observed accumula-
tion curve (R. Colwell, personal communication 2004),

The two parametric distzibutions that provided richness
estimates, Poisson and continuons log-rormal, generally produced
low estimates compared to non-parametric estimators, 14% to
9% over Sy, and 7% 0 2% over §,q, tespectively. The Poisson
log-normal almost always provided Jower estimates than con-
tinnous log-normal, except for the BBS where its estimate is
higher by a single species.

Species—area curves

Acrass the four different grid sizes, the fitted species~aren curves
were very similar for each bird data set. The zvalues averaged
across the four different grids for MAPSTEDI, BES, GBBC, and
MAPSTEDI-BBS-GBEC ‘were, respectively: 0,513 £0.005, 0,275+
0.008, 0.304 & 0,006, and 0.268 + 0.004. All fitted curves also hadt
high ¥ values greater than 0.95. The shapes of the empitical asrves
were slightly different from the fitted curves (see Fig. 4). Because
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Mapsted!

Figure 4 Empirical and fitted specics area
curves for 103 40 ke ¢elt grid. Solid lines

aps

Jenote the empirical curves and dashed lines
denote the fitted ones. Each inset plot
represents the same data plotted on a log-log
scale. Apparent in all the datasets, especially in
Mapstedi, is 2 tendency for the empitical curve
1o have a steeper initial slope that tapers off
more gradualy than the fitted curve. This
results in & hump in the empirical curve near

HNumber of spacies

Number of spacles

midpoint of the area-axis where the empirical 0 lesd 2808 Serd derd Serd Bowd 0 iord o8 30w 4614 Serd Gaed

curve avershoets the fitted qurve.

the fitted species richness values at 62 500 km? were higher than
the empirical values, these were also included in Table £ to compare
with other estimators. The species—area curve estimates were low
£4—8% inczease over S,,) compared t¢ most other estimators.

Relative abundante and richness estimates

The MAPSTEDI data set saw the largest increases in species richness
measured as 2 Fraction of 5y, {see botd values it Table 1). This patterr:
is tikely as a result of the high fraction of rare species in the
MAPSTEDI data set {Table 2}, When compared with the two field
data sets and even the combined data set, MAPSTEDI containg mote
unigues and nearly rwice as many singletens as a fraction of 5,
Because the non-pararnetric richness estimators are primazily a
funciion of rare and uncommon species in the data, the prevalence
of rare records in MAPSTEDI resnits in high richness estimates,
Overall, the GBBC dava set has the second highest overall richness
estimates as a fraction of ;.. The GBBC fraction of vnigues was
higher than in the BBS or combined data sets bt its fraction of
singletons was lower than the combined, likely explaining
why abundance-based estimators like ACE and Chaol are higher
in the combined data set. The BBS had the lowest fraction of
singleions and uniques, and thus, the lowest richuess estimates as
a fraction of S,

Each of the parametric distributions was fit tc the data sets
(Fig. 2). The log-series isa much better fit to the MAPSTEDI data
(P =0.24} than either the Poisson or the continucus fog-normal
distribution {F=3x10" and P=5x 107", respectively). The
MAPSTEDI-BBS-GBBC and GBBC data sets afso showed this pattern,
although the conirasts betweer P values for the log-series and the two
{og-normal distributions were smalier. The reverse patterss was found
for the BBS data set where both log-nomal distributions &ic betrer
than thelag-series (P = 0.604, 0.005 for the contimuous and Poisson
tog-normal and P = 0,000 for the log-sexies). The highest P values
were found with log-series fits, although none was greater than 0.5,

Log, octave relative abundance distributions and associated
fits were also generated for the mamnal data set. The plot {Fig, 2)

Arsafkm2 Arsa/km?2

Table 2 Rarespecies (i.e. under-represented in the sample). The
number of species in each. rarity class s listed along with: the fraction
of 5,4, in parentheses, Singleton and doubleton species ave defined as
having only one and two recorded individuals in the whole data set
whereas unique and duplicate species coour in only one and two of
the samiples, All non-parametric estimators used in this stody are &
function of one er mare of these rarity classes

Gridsize (# cells)  Singletops  Donbletons  Uniques  Duplicates

MAPSTEDI

625 58(0.24) 25 (040)  72(029) 30 (012)
25 58(0.24) 25 (0.00) 74030} 36 (015)
100 ) 58(024) 25 (000)  F4(030) 32 (043)
25 S8(0.24)  25{010)  77{031) 38 (015
BBS

825 7(0.05)  6(00%)  19(009 17 (0.08)
225 7{003)  6{003)  19(00%) 19 (0.09)
100 7{003)  6(003)  25(002) 18 {0.09)
25 7003  6(003)  26{013) 18 {0.09)
GBBC

625 17(000) 05008 29017 17 (0.10)
25 1700000 15(008)  32(018) 15 (0.09)
100 7 (000} 15(009)  32(0.8) 15 (009)
2 17 (000} 15(0.09) 35 (020) 17 (0.10)
MAPSTEDI-BBS-GBIC

625 33(041)  18(0.06) 44 (0I5) 23 (0.08)
25 33 (011) 1800060 44 (019 26 (0.69)
100 33(001) 18 (0.06) 45 (015) 27 (009)
25 33 (0.H) 18 (0.06) 48 (0.16) 26 (0:09)

revenls a pattern similat to that in the MAPSTEDT and combined
data sets, with the main peak in the first octave and at least ane
smailer peak in the larger octaves. This indicates that a significant
proportion of the 122 species in the MAPSTEDI-MaNIS mammal
data set were rare. The P values for the mammal data are also
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similar to the Aves MAPSTED dara set, The continous and Poisson
log-normal have poor fits {P = 1.8 10" and 3.8 107 respec-
tively) while the log-series fits much better (P = 0.,45). Compared
against the MAPSTEDI Aves data, the MAPSTED!-MaN1S mammal
log, abundance distribution is broader and flatter. This differ-
ence likely reflects that the mammal data have 50% more records
distributed among less than haif the spectes of the bird data.

DISCUSSION

Estimated species richness frow the combined data set likely best
approximates the true regional species richness for two reasons.
First, each individual data ser had unique species records not
found in any of the other data sets, MAPSTEDI has the most unique
species (49), and both the BBS and the GEBC had Jess than half
that pumber (21), All of these species have been confirmed to
potentially occur i Colorada via reference to species lists avait-
able from online sources {Colorado Division of Wildlife, <htip:/
ndis.nrel.colostare eduiwildlife.asp>). Second, the overall estimates
appear consisient with known sumber of bird species in the
region, The state of Colarade, a larger vegion than axamined here,
has approximately 465 species {<http:/fwww.camacdonald.com/
birding/uscolorado.htm>) whereas Rocky Mountain National
Park, a smaller region within our sampling area has 280
{<htip:/fwww.nps.goviromofresources/plantsandanimals/names/
birds heml>). Our estimates for the mid-sized region studied here
isapproximately 350 species. Although this number has not been
directly independently verified, it does appear to falk between the
values abave for smatler and larger regions above.

The museum data set has the fewest species cocurrence records
of the data sets used by almost two orders of magnitude, Despite
the limited number of occurrences, the number of observed
apecies (8,5} is much higher (Table 1} than in either survey
data set. We considered two alternatives to explain the results.
One is that BBS and GBBC data ave coflected at limited times
during the year, whereas the Muscum data are aot and theretore
gach survey data set misses some seasonally occurring birds. To
examine this firrther, we accumulated life bistory information for
regional species from the Colorade Division of Wildlife (<hitpe/f
ndis.nrel.colostate.edu/wildlife. asp>) and then determined seasonal
trends in coliecting. MAPSTEDT data show a weak summer species
shevw (479% stimmer residents or migrants and 35% winter migrants
or residents). The BBS data show a sliphtly stronger skew rowards
summer residents or migrants (55% summer vs. 36% winter). Win-
ter migrants or residents are stightly more common it the GBBC
(50% winter; 49% summer). Although there is a trend for data sets
to preferentially cover one season or anothex, it Is nat streng essough
to explain why MAPSTEDI muszum data has the highest §,,,.

A more likely explanation is that the museum records are cob-
lected with an emphasis on rare specimens, what we call the ‘rare
Tepresentation’ effect. Buth protessional and amateur collectors
are more likely to focus on novel or rave finds and collect those
while leaving behind the more common species that would take
up valuable space in already cramped collections cabinsts. Also,
museum colfecions often represent a longer record of collecting
than surveying data sets, and it is possible that they might accummlate
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more ‘odd’ or ‘rare’ years wheve iodividuals are found outside
their normal ranges. As a result, collections include fewer samples
of commuan individuals and species across their normal range in
order to caplure a5 many $pecies as possible. If true, musenm
collections may have excellent coverage of species from a region,
but dispiay more flat or distorted abundance distribartions.

Performance of estimators for species richness

For each data set, the estimators in our study present a wide range
of improvemems over 5,,. Studies using field data (¢.g. Palmer,
1990, 1991; Colwell & Coddington, 1934; Walther & Motand,
1998; Chiarucei et al., 2003) and simulated data (e.g. Walther &
Marand, 1998; Brose ef al., 2003) suggest that some of these
estimators may be less biased than others when sempling is less
than optimal. Some work (Palmer, 1950, 1951; Colwell & Coddington,
1994; Hellmann & Fowler, 1999; Chiarucci ef o1, 2003) concludes
that of the estimators used in this study, the second order
jackknife is the least biased. There i less consensits about bias in
the remaiting estimators, although the first order jackknife
sometimes comes in second (Walther & Morand, 1998; Chiarucel
et al., 2003). The bootstrap showed a larger bias than both
jackknife estimators and the Chao2 {Palmer, 1990, 1991; Colwell
& Coddingtor, 1994 Walther & Morand, 1998; Hellmani: &
Fowter, 1999; Chianucci er al,, 2003).

Estimators appear to show higher estimases of richness with
decreasing bias and that pattern is seen here: the least biased
estimator, Jack2, bas the largest increase over S, followed by
Jacki, Chao2, and Booistrap. Other studies using museum col-
jections dara reported similar results; Petersen ef al. (2003) used
Diptera collections data with Jack2 yielding the highest estimates
followed by Jack1, Chao, ICE, MMMean, Chaol, and bootstrap.
Meier and Dikow (2004) looked at a stazHer set of estimaters and
saw high estimates from Jack2 followed by ICE, Bootstrap, and
Chaot. Although so far consistent for musenm data sets, this pat-
tern does not hold for field data sets (e.g, Chazden ¢t al., 1998).
The fact that the least biased estimators provided the highest
estimates of species richness lends support to the high jackknife
estimates it MAPSTED] and the combined data set. Notably, the
Jack2 estimates from MAPSTEDS and the combined data sets are
remnarkably close, 358,82 and 367.11 species, respectivety. The
Tack2 estimator, like other incidence-based non-parametric
estimators, is a function of the nminber of unique and duplicare
species (i.e. species present in only one and $wo samples, respec-
tively); oniy the Jack2 estimator is a monotonically increasing
function of unique species and 2 monotonically decreasing fince-
tipa of duplicare species (Colwell & Coddington, 1994). Thus,
the high Jack?2 estimate for the MAPSTEDY data set is probably
axphained by the fact that the latter had nearly twice the fraction of
unigue species as any other data set (see Table 2) and the highest
S, OF any single data set.

Advantages of combined approaches

Baoth the sarvey and museum data sets reviewed hete have their
strengths and weaknesses, The survey data sets have many records
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and appear close to their maxinam observable number of species
given their sampling methodologies ever though they have fewer
observed species. In this case stidy, museun data have better
representation of species but have fewer records and show an
accumulation curve far from its asymptote. The combined data set
appears 1o have a mixture of these gualities; & shows an accumn-
tation aurve doser 1o fis asymptote than the museum data and
represents the most aumber of species, Although jmproved
compared 1o the musenm data set, curves for those combined
still do not reach an asymptote. Given the two order of ragni-
tude increase in the number of records in the combined data set
versus the museuns data ser, the improvement in the combined
estimation was less thae: we anticipated. Nonetheless, the improved
shape of the sccurulation eurve and highest 8, strongly suggests
that combined approaches vising musenm collection information
along with survey information may give the overall best estimates
of species tichness. The GBBEC and BBS do not well represent
regional species richuess given the observed and ¢stimated richness
in the combined analysis. I this sense, the museiznt data set
appears to more precisely reflecttrue species richness although
it shows a distorted abundance distribution and increasing
accumulation carve,

Generality of results presentad here

o understand whether our results are unique to this study group
and area, we examined patterns of rarity and commonness in 2
mammal data set framn the same region. Mammals are less diverse
than birds in Colorado, and there are slightly more maseum
records available (approximately 5006 instead of 4000} for the
study region. When we plotted occurtences versus the number of
species en our log, octave plots, mammal data appear {0 show
patterns similar to thase seen in the avian musenm data set, The
Proportion of singletons and doubletons is lower in the mammat
than it the bird data set, but rare species are sill the most com-
mor category. The combined mammal museom data set has a
log, octave plot shape that appears most similar to the overall
combined muscum-BB3-GBBC data for birds,

If museum collectors do take a ‘rare representation’ perspec-
tive to collecting biodiversity information, we argue that resuits
presented here should be applicable to regionally diverse groups.
The mose diverse the group, the more likely 1t is that many
species will appear raze in the museum collections. For example,
Longino erel, (2002) show that tare specimens are more dom-
inant in a spider sample colfected by @ specialist thaa in mass
sampling methods. While we beligve this argurment to be pener-
ally trize, there are some, groups thas may be idiosyn cratically well
sampled because of individual cotlector's area of research interest
or expertise, This claim also depends in part on the effort vequired
to collect specitnens, which is higher for some taxa thar others. A
lower effort per specimen could result in a larger specimen colfec-
tiom, 2 less skewed abundance distribution, and the appearance
of better sampling, It is also possible that differing <ollecting
strategies pliay a rofe in sampling adequacy. For example, snap-
traps are the most common method for accumulating mammal
specimens, whereas with birds and other taxa, the colfector self-
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selects samples. Samples accumnlared by traps and not selected
by the collectar could exhibit Jess potential bias. Additionally, an
abundance of rare records could depend on the number of
species occurrence records available for the region examined, In

this study, we were able to accumulate several thousand muoseum ;.

records, and it is unkown how the Ppatterns scale with orders of
magitude more records. We doubt that much mare data are
available for this area at present, We pertormed an online data-
base check of mammal and bird records for Colorado available
fronx institutions not included here (e.g-the National Museuss of
Natural History) and found few records, if any, that could be
used. However, many patentially usable specimen records have
et to be assigned explicit computer-readable seospatial coordi-
nates (i.e. tetrospectively georeferenced), a necessary first step
for inclusior in this study, As more peoreferenced specimens
become available, it may be possible to test how much more data
a ieeded before sampling fiom musenm data sets appears satis-
factery. Qur work is 1 case study of the use of multiple data sets w0
understand regional species richness. Similar approaches in
different regions, and across broader geographical scales, will
provide further tests of the geverality of the resahs presented here,
Despite the daunting tasks ahead of documenting and under-
standing patterns of biodiversity, we believe the time is right to begin
leveraging muktiple data sets to appreach these crucial questions
and evaluate the strengths and fimitations of these data sets,
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SUPPLEMENTARY MATERIAL

The following supplementary material is available at <hutpef/
www.mapstediorg/supp_mathiml>

Stupplementary iaterial and methods describes some data formar-
ting, georeferencing, and data analysis methods in more detail.

Elgure 51z Species accumulation cizrves and estimates richness
curves for all Aves datit sets on the 16.67 X 16.67 ki cell grid.

Figure 82: Species acommstation corves snd estimates richress
curves for all Aves data sets on the 25 % 25 km ceff grid.

Figure 83: Species accurnulation curves and estimates ricliness
cutves for all Aves data sets on the 58 % 50 km cell grid.

Figure 84: Pearson correlation coefficient values between each
of three data set pairs. Correlation values are shown for each grid
il i the study area and for each of the four different grids.
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Table 81: Species lists and number of occurrences for the
MAPSTEDI, BBS, and GEBC data sets.
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