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Abstract

With the rise of new powerful statistical techniques and GIS tools, the development of predictive habitat
distribution models has rapidly increased in ecology. Such models are static and probabilistic in nature, since they
statistically relate the geographical distribution of species or communities to their present envircnment. A wide atray
of models has besn developed to cover aspects as diverse as biopeography, conservation hiology, climate change
research, and habitat or species mamagement. In this paper, we present a review of predictive habitat distribution
modeling. The variety of statistical techniques vsed is growing. Ordinary multiple regression and its generalized form
(GLM) are very popular and are often used for modeling species distributions. Other methods include neural
netwerks, ordination and classification methods, Bayesian models, locally weighted approaches (e.g. GAM], environ-
mental envelopes or even combinations of these models. The selection of an appropriate method should not depend
solely on statistical considerations. Some models are better suited to reflect theoretical findings on the shape and
nature of the species’ response (or realized niche). Conceptual considerations include e.g. the trade-off between
optimizing aceuracy versus optimizing generality. In the field of static distribution modeling, the laiter is mostly
related to selecting appropriate predictor variables and to designing an appropriate procedure for model selection.
New methods, including threshold-independent measwres (e.g receiver operating charaeteristic (ROC)plots) ard
resampling techniques (e.g. bootstrap, cross-validation} have beer introduced in ecology for testing the accuracy of
predictive models. The choice of an evaluation measure should be driven primarily by the goals of the study. This
may possibly lead to the attribution of different weights to the various types of prediction errors (e.g. omission,
commission or confusion). Testing the model in a wider range of situations (in space and time) will permit one to
defing the range of applications for which the model predictiens are suitable, In turn, the qualification of the modei
depends primarily on the goals of the study that define the qualification criteria and on the usability of the model,
rather than on siatistics alone, © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The analysis of species—environment relation-
ship has always been a central issus in ecology.
The miportance of climate to explain animal and
plant distribution was recognized early on {Hum-
boldt and Bonpland, 1807; de Candolle, 1855},
Climate in combination with other environmental
factors has been much used to explain the main
vegetation patterns around the world {e.g. Salis-
bury, 1926; Cain, 1944; Good, 1953; Holdridge,
1967; McArthur, 1972; Box, 1981; Stott, [981;
Walter, 1985; Woodward, 1987; Ellenberg, 1988).
The quantification of such species—environment
relationships represents the core of predictive geo-
graphical modeling in ecology. Thess models are
generally based on various hypotheses as to how
environmental factors control the distribution of
species and communities.

Besides its prime imporiance as a ressarch tocl
in autecology, predictive geographical modeling
recently gained importance as a tool to assess the
impact of accelerated land use and other environ-
mental change on the distribution of organisms
{e.q. climate - Lischke et al., 1998; Kienast et al.,
1995, 1996, [998; Guisan and Theurtlat, 2000}, to
test biogeographic hypotheses (e.g. Mourell and
Ezcurra, 1996; Leathwick, 1998), to improve
floxistic and faunistic atlases (e.g. Hausser, 1995)
or to set up conservation priorities (Margules and
Austin, 1994). A variety of statistical models is
currently in use to simulate either the spatial
distribution of terrestrial plant species (e.g. Hill,
1991; Buckland and Elston, 1993; Carpenter et
al,, 1993; Lenihan, 1993; Huntley et al, 1995,
Shao and Halpin, 1995; Frankkin, 1998; Guisan ¢t
al,, 1998, 1999}, aquatic plants (Lehmann et al.,
1997; Lehmann, 1998), tervesirial animal species
(e.g. Pereira and Itami, 1991; Aspinall, 1992; Au-
gustin et al., 1996; Corsi et al., 1999; Mace et al.,
1999; Manel et al., 1999; Mladenoff et al., 1995,
1999), fishes (Lek et al., 1996; Mastrorillo et al.,
1997), plant comermmities (e.g. Fischer, 1990;
Brzeziecki et al,, 1993; Zimmermann and Kienast,
1999), vegetation types (e.g. Brown, 1994; Van de

Rijt et al,, 1996), plant functional types (c.g. Box,
1981, 1995, 1996), biontes and vegetation units of
similar complexity (Monserud and Leemans,
1992; Prentice et al., 1992; Tchebakova ¢t al.,
1993, 1994; Neilson, 1995), plant biodiversity (e.g.
Heikkinen, 1996, Wohlgemuth, 1998), or animal
biodiversity (Owen, 1989; Fraser, 1998) (see also
Scott et al, in press for numerous additional
examples of plant and animal species distribution
models). Such static, comparative, models are op-
posed to more mechanistic medels of ecosystem
processes (Peters, 1991; Jones, 1992; Pickett et al.,
1994; Lischke et ak, 1998). Since only very few
species have been studied in detail in terms of
their dynamic responses to environmental change,
static distribution modeling often remains the
only approach for studying the possible conse-
quences of a changing environment on species
distribution {Woodward and Cramer, 1996).

The development of predictive models is coher-
ent with Peters’s (1991, p. 274) view of a “more
rigorously scientific, more informative and more
useful ecology”. The use of and theoretical limita-
tions of static models compared with dynamic
approaches have been described in several papers
(e.g. Decoursey, 1992; Korzukhin et al, 1996
Lischke et al.,, 1998). Franklin (1995) provides &
review of some currently used statistical tech-
niques in vegetation and plant species modeling.
Particular aspects of model development (e.g. vet-
ification, calibration, evaluation (= validation),
qualification) have been covered in more specific
papers, with very special attention given in recent
years to evaluation and its usefulness for testing
ecological models (e.g. Lochle, 1983; Oreskes et
al., 1994; Rykiel, 1996). Since then, new statistical
technigues for calibrating and testing predictive
models have emerged (sec e.g. Scott et al, in
press).

The aim of this paper is to review the varous
steps of predictive modeling, frem the conceptual
model formulation to prediction and application
(Fig. 1). We discuss the importance of differenti-
ating between mode formulation, model calibra-
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Fig, 1, Overview of the successive steps {1~5) of the model building process, when two data sets ~ cne for fitting and one for
evaluating the model —~ are available, Model evaluation is cither made: (a) on the calibration data set using bootstrap,
cross-validation or Jack-knife technigues; (b} on the independent data set, by comparing predicted to observed valnes using
preferentially a threshold-independent measure (such as the ROC-plot approach for presence/absence medels),

provide an overview of specific analytical, statisti-
cal methods currently in use.

2. Coneeptusl model formulation

The process, which ends with the formulation
of an ecological model, usually starts from an
undeslying ecological concept (e.g. the pseudo-
equilibrium  assumption in static distribution
modeling). We consider it crucial to base the
formulation of an ecological model on an under-
lying conceptual framework. Hereafter, we discuss
a selection of important conceptual aspects.

2.1. General patterns in the geographical
distribution of species

The core theory of predictive modeling of biotic
entities eriginates from major trends published in
the field of biogeography. Herte, our aim is noi to
summarize al the patterns and processes of geo-
graphic range limitation, which are best provided

by specific review papers (e.g. Brown et al,, 1996),
but to illustrate the link with the conceptual
mode] formulation through examples.

A matter of primary interest is the relative
importance of biotic versus abiotic factors at the
margins of a species’ range, Brown et al. (1996)
recalls that “in mest ecological pradients, the
majority of species appear to find one direction to
be physically stressful and the other to be biologi-
cally stressful”. This was stressed for an elevation
gradient (Guisan et al., 1998) and already sug-
gested for latitudinal gradient by Dobzhansky
(1950) and McArthur (1972). In a more general
way, physical limits are cansed by environmental
and physiological constraints (i.e. direct and re-
source gradients in the sense of Austin et al.
(1984) and Austin and Gaywood (1994) under
suboptimal conditions along these gradients {e.g.
too cold, too dry). A discussion on (1) using
causal rather than non-causal factors and (2) con-
sidering inter-species competition for fitting a
static model follows in the next sections and in the
final perspectives.
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2.2 Generality, reality, and precision

Nature is too complex and heterogeneous to be
predicted accurately fn every aspect of time and
space from a single, although complex, model.
Levins (1966) formulated the principle that only
any two out of three desirable model properties
(generality, reality, precision} can be improved
simultaneousty (Fig, 2), while the third property
has to be sacrificed. This trade-off leads to a
distinction of three different groups of models
{Sharpe, 1990; Prentice and Hefmisaari, 199F; Ko-
rzukhin et al., 1996), and its associated consiraints
are consequential when selecting modeling ap-
proaches for specific project poals.

The first group of medels (i} focuses on general-
ity and precision. Such modsls are called anaiyti-
cal (Pickett et al., 1994) or mathematical® (Sharpe,
1990), and are designed to predict accurate re-
sponse within a limited or simplified reality. The
Lotka—Volterra equation and their variants
(Volterra, 1926; May, 1981), the general logistic
growth eguation, or the Blackman growth law
{Assmann ex Sharpe, 1990) are examples of ana-
Iytical models. A second group of models (if) is
designed to be realistic and general. They are

Reatity

empirical
phenomenological
tecological)
statisticat

mechanistic
physiclogical
indainental)
process-bused

Precision Generality

analytical
mathemarical
thegrefical

Fig. 2. A classffication of models based on their intrinsic
propertics. After Levins (1966), and Sharpe (1990).

2 We find this term misfeading, since all of the three princi-
pal modeling approaches may rely on more o less extensive
mathematical formulations,

called mechanistic {(e.g. Prentice, 1986a}, physio-
logical {(g.g. Leersnijder, 1992}, causal (e.g. De-
coursey, 1992) or process models (e.g. Korzukhin
et al., 1996), and they base predictions on real
cause—effect relationships. Thus they may also be
considered as general, since these relationships are
considered as biologically functional (Woodward,
1987). A model of this group is not judged pri-
marily on predicted precision, but rather on the
theoretical correctness of the predicted response
(Pickett et al., 1994}, A third group of models (iii}
sacrifices generality for precision and reality. Such
models are catled empirical (Decoursey, 1992; Ko-
rzukhin et al., 1996), statistical (Sharpe and
Rykiel, 1991), or phenomenclogical (Pickett et al.,
1994; Leary, 1985). The mathematical formula-
tton of such a model is not expected to describe
realistic ‘cause and effect” between model parame-
ters and predicted response, nor to inform about
underfying ecological functions and mechanisms,
being the main purpose to condense empirical
facts {(Wissel, 1992)°.

Although Levins’ classification is helpful, it is
somewhat misleading. In practice it can be
difficult to classify a specific medel (Korzukhin et
al., 1996). Predictive distribution models are gen-
erally categorized as empirical models; however,
Prentice et al. (1992) argne that their (predictive)
global vegetation model, rigerously based on in-
dependent physiological data and physiological
first principles, is as mechanistic as we would
achieve with limited data. Alse Korzukhin et at.
(1996) point out that process and empirical mod-
els can both have cither a high or low degree of
generality depending on the nature of the object
being modefed, and that mechanistic models by
their nature do not necessarily have to be impre-
cise. They conclude that precision, generality and
reality are not atways mmtually exclusive. Simi-
larly, Peters (1991, p.32) notices that, “thers is no
necessary  comflict  between precision and
generality”,

¥ Several authors do not distinguish clearly between analyti-
cal and empirical models (e.g. Loehle, 1983; Wissel, 1992),
they use muitiple criterda to arrangs models along thess gradi-
ents (e.g. Pickett et al,, 1994), or they introduce subclasses to
Leving” modef classifieation (Kimmins and Sollins, 1989; Kim-
mins et al., 1990},
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Loehle (1983) recognizes two distinet types of
models: caleulating tools and theoretical models.
The first can be put in the class of empircal
models, since “they are intended only to inform
us about the configuration of the world” {Peters,
1991, p. 103), whereas the theoretical models are
synonymous with the mechanistic models, capable
of predicting response from plausible causal
relations.

We argue that Leving’ classification and trade-
offs are nevertheless useful in a conceptual con-
text (see below). They help to focus on one or the
other characteristics in model buailding, depending
on the overall goal of the modeling effort, Predic-
tive vegetation models are generally empirical by
nature, However, they can be based on physiolog-
ically meaningful parameters (e.g. Prentice et al,,
19%2; Lenihan, 1993), and can thus be described
as more mechanistic than models based, say, on
topographic parameters only {e.g. Burke et al,
1989; Moote et al,, 1991), This difference summa-
rizes the main axis along which most of the
predictive vegetation models can be arranged: in
most cases it is the trade-off between precision
and generality.

2.3. Direct versus indirect predictors

From a mechanistic point of view, it is desirable
to predict the distribution of biotic entities on the
basis of ecological parameters that are believed to
be the causal, driving forces for their distribution
and abundance. Such ecological factors are gener-
ally sampled from digital maps, since they are
usualty difficalt or expensive to tneasure. How-
ever, they often tend to be less precise than pure
topographic charactetistics. Most  bioclimatic
maps are developed by elevation-sensitive spatial
interpolations of climate station data (Hutchinson
and Bischof, 1983; Daly et al., 1994; Thornton et
al, 1997). This introduces spatial uncertainges
because of (i) interpolation errors, (i) fack of
sufficient stations data, and (iif} the fact that
standard climate stations do not reveal the biolog-
icatly relevant microclimates. Soil (and mutrient)
and geology maps are even more difficult to
derive. They are usually generated at very coarse
resofution and are often drawn up using vegeta-

tion as delineation criteria. On the other hand,
available digital elevation models (DEM) tend to
be relatively accurate, even in mountainous ter-
rain. Thus, directly derived topographic variables
(slope, aspect, topegraphic position, or slope
characteristics) are generated without much loss
of precision. It is thus not surprising that predic-
tive vegetation models, developed for mountain-
ous terrain at relatively high spatial resolution,
are based partially or completely on topographi-
cal factors (Fischer, 1990; Moore et al, 1991;
Breeziecki et al., 1993; Brown, 1994; Guisan et al.,
1998, 199%), On the contrary, large-scale predic-
tive models are generally based solely on biophys-
ical parameters, since topography no longer has
any predictive power at such coatse resolution
(Box, 1981; Prentice et al.,, 1992; Lenihan, 1993;
Huntley et al., 1995; Neilson, 1995),

The distinction between topographic and biocli-
matic variables is important in the discussion of
precision versus generality. Austin (1980, 1985),
Austin et al. (1984), and Austin and Smith (1989)
defined three types of ecological gradients, namely
resource, direct, and indivect gradients. Resource
gradients address matter and energy consumed by
plants or animals (nutrients, water, light for
plants, food, water for animals). Direct gradients
are environmental parameters that have physio-
logical importance, but are not consumed (tem-
perature, pH). Indirect pradients are variables
that have no direct physiclogical relevance for a
species’ performance (slope, aspect, elevation, to-
pographic position, habitat type, geology; Fig. 3
gives an example for vascular plants). They are
most easily measured in the field and are often
used because of their good correlation with ob-
served species patterns. Indirect variables usually
replace a combination of different resources and
direct gradients in a simple way (Guisan et al.,
199%).

However, one drawback of using such indirect
parameters is that a model can only be applied
within a limited geographical extent without sig-
nificant errors, because in a different region the
same topographic pesition can reveal a different
combination of direct and resource pgradients.
Walter and Walter (1953) called this the “law of
relative site constancy” {Geseiz der relativen Stan-
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Fig, 3. Example of a conceptual model of relationships between resources, direct and indirect environmental pradients {see e.g.
Austin and Smith, 1989), aud their infivence on growth, performance, and geographical distribution of vascular plants and

vegetation.

dortkonstanz). Tt describes the fact that species
tend to compensate regional differences in cli-
matic conditions by selecting comparable mi-
crosites by changing their topographic positions.
In turn, the use of direct and resource gradients as
predictive parameters — in which case predictions
are based on what is supposed to be more physio-
logically ‘mechanistic’ — ensures that the modet is
more general and applicable over larger areas.
Furthermore, direct and resource gradients help
to pave the way towards incorporating dynamic
aspects of vegetation succession in spatially ex-
plicit models, as proposed by Solomon and Lee-
mans (1990) or by Halpin (1994),

2.4. Fundamental versus realized niche

The fundamental niche is primarily a function
of physiological performance and ecosystein con-
straints. As an example, Woodward (1987, 1992)
analyzed the mechanistic refationships between
climate parameters and plant fundamental re-
sponse. The realized niche additionally includes
biotic interactions and competitive exclusion (El-
lenberg, 1953; Malanson et al., 1992; Malanson,
£997). The concept of the ecological niche was
clarified by Hutchinson (1957) and recently revis-
ited by several authors in the context of predictive
modsling (e.g. Austin et al., 1990; Westman, 1991;




A. Guisan, N.E. Zimmermann / Ecological Moedelling 135 (2000) 147- 186 153

Malanson et al., 1992; de Swart et al, 19%4;
Rutherford et al., 1995; Franklin, 1995; Leibold,
1995). Differentiating between the fundamental
and the realized niche of a species is particularly
important because it distinguishes whether a sim-
ulated distribution is predicted from theoretical
physiological constraints or rather from field-
derived observations.

Strict mechanistic models parameterize the fun-
damental niche and additionally imgptement -rules
of competitive behavior to finally result in the
predictions of the realized response. As an exam-
ple, Prentice et al. (1992) based their model pri-
marily on theoretical and  physiological
constraints, and they add simple rulss to cope
with succession and dominance, Static predictive
madels are generatly based on large empirical field
data sets, thos, they are likely to predict the
realized (ecological) niche. This seriously Hmits
applications in changing environmental sitaations.
However, Malanson et al. (1992) demonstrate
how empirically fitted response surfaces can be
altered on the basis of theoretical and physiclogi-
cal principles to design a more fundamental
[ESPOTLSE.

2.5, Equilibrium versus non-equilibriym

Static distribution models are developed from
simple statistically or theoretically derived re-
sponse surfaces. Thus, they automatically assume
equilibrium — or at least pssudo-equilibeium (Lis-
chke et al., 1998) — between the environment and
observed species patterns. The non-equilibrium
concept is more realistic in ecology (Pickett et al.,
1994), because it includes equilibrium as a possi-
ble state (Clark, 1991). However, a model based
on the non-equilibrium conecept must be (i) dy-
namic and {jf} stochastic. Static distribution mod-
els are conceptually unable to cope with
non-equilibrivm situations, since they do not dis-
tinguish between the transient and equilibrinm
response of species to a stochastically and dynam-
ically changing environment. Hence, considering a
state of equilibrium is a necessary assumnption for
the purpose of large-scale distribution modeling.
This lirnitation is less restrictive for species, or
communities, which are relatively persistent or

react slowly to variability in envirommental condi-
tions (e.g. arctic and alpine}.

Such a drawback is compensated by large-scale
prediction with less effort, and the advantage that
1o detailed knowledge of the physiology and be-
havior of the species involved is necessary. Sitna-
tions with strong disturbance, human influsnee, or
suceessional dynamics can thus only be modeled
with difficulty (Brzeziecki et al., 1993; Guisan et
al.,, 1999; Lees and Ritman, 1991; Zimmermann
and Kienast, 1999). However, it is sometimes
possible to include such factors as. predictive
parameters®. The alternative to statie, equilibrivm
modeling i3 dynamic simulation modeling {Ko-
rzukhin et al,, 1996; Lischke et al., 1998). How-
ever, since such models rtequire intensive
knowledge of the species involved, most of these
models are developed for well-investigate species
and habitats. Onky few dynamic modsls have yst
been developed in a spatially explicit way that
allow simulations on larger spatial scales (e.g.
Urban et al., 1991; Moore and Woble, 1993;
Roberts, 1936; He et al., 1999; He and Mladenoff,
1959).

2.6. Species versus community approach

Another major discussion in this field is
whether a model i3 said to be ‘gleasonian’ or
‘clementsian” {Prentice et ak, [992) simulating
species either individually or as community as-
semblages (see also Franklin, 1995). This discus-
sion is embedded in the community-continuum
debate (Clements, 1916, 1936; Gleason, 1926;
Cooper, 1926; Whittaker, 1967; Mclntosh, 1967,
Austin, 1985; Austin and Smith, 1989; Collins et
al., 1993).

A main argument for species modeling is the
palececological evidence that plant species assemn-

* Figcher (1590} identified land-use as the factor with the
highest predictive power when modeling community distribu-
tion in a human-disturbed landscape. Lees and Ritman (1991)
discussed the trade-off between spectral (remotely sensed data)
and spatial (enviconmental GIS data) ascuracy to respectively
predict disturbed {e.g. rural or urban} versus undisturbed (e.p.
rainforest) landscapes. Box (1981) as well as Prentice et al,
(1992) included hierarchical rules to cope with succession, by
simutating mature stages only.
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Fig. 4. Criteria for model selection. Examples of considerations for madeling vascular plant species in space and/or time, given a
set of possible criteria to reach the project goals, CC: climatic change.

blages have never been stable, mostly dae to past
vagiations in climate (Webb, 1981; Prentice,
1986b; Ritchie, 1986). Modem species assem-
blages do not have long histories (Davis, 1983;
Biiks, 1993) and therefore, communities are not
likely to move as an entity under changing cli-
matic conditions (Birks, 1986; Huntley and Webb,
1988). Hence, modeling species instead of comru-
nities comes closer to what is believed to be
realistic’. An alternative to modeling communities
is to simulate a selection of dominant species, and
to classify their superimposed distributions after-
wards, in order to generate simulated community

3 Frank¥in (1993) discusses the different points of view in the
context of predictive vegetation mapping. She concludes that:
“...communities (and ecotones} are geographic entities, and
therefors can be predictively mapped. However, predictive
mapping of spesies distributions presents far fewer definitional
uncertainties or abstractions, Often the distribution of species
assemblages (plant communities) or functional types... is pre-
dicted owing to metbodological considerations (lack of suffi-
cient data to model species distributions) razher than strong
loyalty to the community concept,”

maps (Lenihan, 1993; Austin, 1998; Guisan and
Theurillat, 2000}, This approach solves the miss-
ing logic of arbitrary a priori classifications. How-
ever, when predicting future potential
distributions based on static models and scenarios
of environmental change (e.g. climatic change),
the same limitations apply to species and commu-
nity models. Both approaches are based on equi-
libtium assumptions (between observed response
and environmental conditions) and lack the possi-
bility of simulating the individualistic behavior of
species (1.e. seed dispersal, migration, plasticity,
adaptation, etc.).

2.7, Conceptual guidelines

So far we discussed that conceptual consider-
ations based on the overall goal of the study are
essential for the design of an appropriate model.
Fig. 4 gives an example of possible considerations
for modeling the distribution of vascular plants.
In general, if high predictive precision is required
to model the distribution of biclogical entities on
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a large spatial scale under present environrmental
conditions (e.g. Hausser, 1995), then static model-
ing is a valid and powerful approach. It may also
be selected for modeling large-scale potential dis-
tributions under environmental change scenarios,
but limitations apply, as previously discussed. For
modefing at small spatial scales and in complex
topography the use of indirect variables may
provide better predictions, while for simulations
at large spatial scales the use of direct and re-
source gradients should be the first choice.

3, Sampling design, field survey, spatial scales,
and the geographical modeling context

The formulation of the conceptual model leads
ideally (i) to the choice of an appropriate spatial
scale (reviewed by ‘Wiens, 1989, see also
Hengeveld, 1987, Fitzgerald and Lees, 1994a) for
conducting the study, and (i) to the selection of a
set of conceptually {e.g. physiologically) meaning-
ful explanatory variables for the predictive model
(Fig. 3). Additionatly, it may be helpful to design
an efficient sampling strategy by identifying those
gradients that are believed to play a key role in
the model and should thus be considered primar-
ily to stratify the sampling (Mohler, 1983; Austin
and Heyligers, 1989, 1991; Wessels et al, 1998).
The main environmental pradients in the study
area (be it a small catchment or a large area) can
be identified in a preliminary exploratory analysis
(e.g. Dufréne and Legendre, 1991; Aspinalf and
Lees, 1994) and used to define a sampling strategy
that is especially designed 1o meet the require-
ments of the model objectives (Mohler, 1983).

The gradsect approach — originally proposed
by Helman (1983) and later improved by Gillison
and Brewer (1985) and by Austin and Heyligers
(1989, 1991) — represents a compromise between
randemized sampling {(distribution and replica-
tien) of multiple gradients along transects (stratifi-
cation) and  minimizing  survey  costs

(accessibility). It can easily be designed in a geo-

graphical information system (Cocks and Baird,
1991; Neldner et al. 1995, Franklin et al., in
press1993} and can thus be adapted to the spatial
tesolution of any study area. Austin and Heyligers

(1991, p.36) provide a detailed list of the general
steps that can be wsed to design a reasonable
survey based on the gradsect methed.

Designing the sampling according to a random-
stratified scheme is another classical approach
that can also be set up in a GIS. However,
diffienlties may arise from studies that involve
many environmental gradients and many species,
since setting up a multi-gradient stratified sam-
pling is a particularly demanding task (Goedicke-
meider et al,, 1997; Lischke et al., 1998). Individual
15 layers have to be stratified and intersected in
order to delineate the polygons from which ran-
dom samples have to be drawn. Each polygon
represents a specific combination of environmen-
tal conditions, and each of these combinations
(stratum) is usually present in multiple polygons.
Next, a given number of polygons per stratum is
selected randomly where samples have to be lo-
cated. Restrictions may be applied, such as ex-
cluding polygons of size smaller than a lower
threshold and larger than an upper threshold, to
ensure the sampling of polygons of similar sucface
area. Finally, the sample location within the
polygon can be selected randomby or systemati-
cally (e.g. at the centroid of the polygon)®.

A guantitative companson between gradsect,
stratified (habitat-specific), systematic and ran-
dom sampling is given in Wessels et al. (1998) and
partly also in Goedickemeier et al, (1997). It
shows that the gradsect approach gives compara-
ble results to the stratified sampling for approach-
ing species richness patterns in the study arca, and
both are superior to systematic and random sam-
pling in their study context. However, if sampling
is aimed at building species distribution models,
one will want to have all environmental combina-
tions equally sampled, which can be done but is
not enforced by the gradsect approach. The use of
a stratifying approach, although involving maore

§To improve on this, multiple locations per polygon can be
selected to ensure backup points for cases where the actual
environmental characteristics in the field do not correspond to
the strata defined from the information available in the GIS
(physiography, vepetation, or soil maps, ctc.). Each sampling
site is then best localized in the ficld using DGPS (see for eg.
Goedickemeier et al, {1997} or Cherix et at. {1998}
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effort, will provide such a guarantee. Hence, if
spacies richness and biodiversity are the focus,

stratifying will require the proportional represen-

tation of all habitats in order to ensure sampling
of as much as possible of the entire species peol in
each habitat. Conversely, if a quantitative analysis
between: species distribution and environmental
descriptors is the focus, one will attempt to sam-
ple an equal number of replicates per environmen-
tal combination (strata). It is thus fundamental to
discuss the use of a particular method in a well-
defined ecological context.

If a data set was not collected according to a
stratified strategy (as in many cbservational stud-
ies), one may resample a fixed-size subset of ob-
servations from the existing data set within each
environmental siratum. If there are not enough
observations available for a stratum, we suggest
to design a complementary field survey that will
aim at sampling additional observations in under-
represented strata, until the fixed-size number of
replicates is reached. The new — resampled ~ data
set is then more valid for statistical, analytical
purposes.

The minimum distance between two sampling
sites should be defined prior to sampking, accord-
ing to an exploratory spattal autocorrelation
study (see Legendre, 1993 for a review). Autocor-
relation occurs when sampling points are located
50 close to each other that the postulate of inde-
pendence between observations is viclated. In
such a case, pseudoreplication occurs (see Heffner
et al., 1996), i.e. the number of degrees of freedom
(d.f) is lower than (n — & — 1), the usual nurn-
ber of d.f. used for inferences when all observa-
tions are independently and identically distributed
(i.id.}, with n the number of sites and % the
number of parameters in the model. Hence, in
order to avoid spatial autocorzelation, a distance
larger than the minimum distance at which auto-
correlation oceurs has to be chosen (e.g. 150 m for
alpine comumunities; Fischer, 1994). Such a mini-
mum distance criterion can easily be imaplemented
in the design of a random-stratified sampling. If
the sampling distance is too low to avoid autocor-
relation, then an alternative is to include autocor-
relation in the model (Malanson, 1985; Roxburg
and Chesson, 1998), through adding an autocor.

relative term (Augustin et al., 1990), adding the
distance between the observation points {Leath-
wick, 1998) or smoothing model predictions by 2
trend surface analysis (FSA; Pereira and Frami,
1991)".

The environmental information gathered at the
required spatial resolution for the entire study
area is best stored in a GIS. Four main sources
may be identified for the gathering of such envi-
ronmental data:

1. field surveys or observational studies;

2. printed or digitized maps;

3. remote sensing data (numerical aerial photo-
graphs and satellite images);

4. maps obtained from GIS-based  modeling
procedures.

Field data (I} can be field measurements (e.g.
abiotic characteristics of a site) or a network of
meteorological measurements aimed at further in-
terpolating climatic maps (4). Spatial data on
geology, soil units, or hydrology most commeonly
originate from existing printed or digitized maps
(2). Land use, rocky suifaces, snow cover, poten-
tial moisture or vegetation maps can be derived
from aerial photographs or satellite scenes (3).
Examples of distribution studies including remote
sensing data are Frank {1988), Hodgson et al.
(1988), Bagby and Brian (1992), Fitzgerald and
Lees (1992), Herr and Queen (1993), Guisan et al.
(1998), or Franklin et al. (2000). In certain cases,
e.g. in mountaincus areas where distortion can be
high dve to the steep relief, aerial photographs
have to be rectified with the help of a DEM (see
Guisan et al,, 1998; Fig. 5) before they can be
properly georeferenced.

In many cases the main prerequisite for spatial
modeling is the DEM (Fig. 5}. It constitutes the
basis for generating new maps of environmental
variables and determines the spatial resolution of
all derived maps. However, it is important to
distinguish between spatial resclution and map

T The above discussion is not relevant to those siudies which
aim {o interpolate the sampled property (e.g. a crop biomass),
without recourse to any additional eavirenmentat informacion,
In such cases, the use of spatial interpolation techniques o
design an optimal sampling strategy, as e.g. kriging (Atkinscn,
1996), is moze appropriate,
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1. Simulated data

2. Remotely sensed data

o  Digital
geostatistical Elevation rectif‘;ing and
modeling Model (DEM) georeferencing
ctevsion FEHTELE study
wor area
{satelliicy
@ sampling
@ §Jd/ o [ strategy
Rilevss " 3. Field
i s aia

Fig. 5. The central tole of the DEM in predictive habitat distribution medeling, as 2 basis for: (i) generating additional
environmental information through geostatistical modeling {e.g. climatic data); (ii) rectifying aeriat photographs and satellite images
in mountainous areas; (jii} planing field survey (e.g. stratification design).

accuracy. Only rigorous testing of the errors of
mapped entities or gradients will allew one to
assess map accuracy. Generally, all maps derived
from interpolations, caleulations or combinations
are less precise than the maps from which they
originate. Thus, a DEM and its basic derivatives
- slope, aspect, topographic position and curva-
ture — are usually the most accurate aps avail-
able, though not necessarily those with the highest
predictive potential,

Modeling of environmental variables has be-
come more and more powerful. Fractat geometry
can for instance be used to characterize vegetation
complexity and help to interpret aerial photo-
graphs (van Hees, [994). Various spatial interpo-
lation techniques and approaches to deal with the
spatial context {in the sense of Fitzgerald and
Lees, 1994a), such as regional autocorrelation and
topographic dependencies, have been employed to
generate a multitude of bioclimatic maps
(Hutchinson and Bischof, 1983; Daly et al., 1994;
Dubayah and Rich, 1995, Kumar et al, 1997,
Thomton et al., 1997). These publicly available
maps or modeling tools drastically improve the

perspective  of building physiclogically more
meaningfd modely of the environment. Still, the
trade-off between modeling accuracy and ‘physio-
logical’ correctness remains to be evaluated in
terms of the overafl goal of the modet.

Related to the problem of accuracy is the task
of selecting an appropriate data set to parameter-
ize the model. Most predictive variables vary
along topographical gradients. Depending on the
spatial resolution and the techniques used to gen-
erate these maps, topographic varables can be
used to evaluate the correspondence between digi-
tal and field-observed attributes for any location.
Selecting a subset of plots that meet criteria of
high correspondence between digital and reat to-
pography can significantly improve the model
parameterization (Zimmermann, 1996, Zimmer-
mann and Kienast, 1999). This way, the influence
of mapping errors on the model parameterization
can be reduced, although predictive accuracy may
not be improved. It is obvious that measuring
appropriate additional topographic parameters
during the survey is important to make full use of
such modeling steps.

158 A, Guisan, N.E. Zimmermann / Ecological Modelling 135 (2000) 147-186

4. Statistical model formulation

The statistical formulation has alse been called
verification by some authors {e.g. Rykiel, 1996)
and is often presented in the ‘Statistical analysis’
section of most papers dealing with vegetation or
single species modeling. By model formulation, we
mean the choice of (i) a suvited algorithm for
predicting a particular type of response variable
and estimating the model coefficients, and {ii) an
optimal statistical approach with regard to the
modeling context.

Most statistical models are specific to a particu-
lar type of response variable and its associated
theoretical probability distribution {or density
function). As a consequence, the latter has to be
tested prior to the selection of an adequate model.
This can be done, e.g. for a continuous response
variable, by comparng its empirical distribution
to the theoretical probability distribution (good-
ness-of-fit y test} or their cumulative form (Kol-
mogorov—Smirnov test). A summary of some
available techniques for modeling respectively
quantitative {i.e. metric; ratio or interval scale;
continuous or discrete), semi-quantitative {ie. or-
dinal) or gualitative (i.e. nominal; categorical)
response variables are given in Table 1 and ilius-
trated with examples from the Literature, Often,
more than one technigue, that may or may not
belong to the same statistical approach, can be
applied appropriately to the same response vari-
able (Table 1).

The importance of a correct statistical model
formutation is best illustrated with an example.
Consider predicting the potential abundance of a
species (or ground cover for plant species; see
Brown et al., 1995 for a review of models for the
spatial distribution of species abundance). Using
standard least square {L8) regression in this case
might be inadequate for the following reasons.
Abundance is often recorded as a discrete variable
and its distribution might reasonably follow: (i} a
Poisson distribution (Vincent and Haworth,
1983}, (ii} a negative binomial distribution {(May.
1975; Oksanen et al.,, 19%0; White and Bennetts,
1996), (iii) a canonical log-normal distribution
(May, 1975), (iv) a broken-stick distribution
{May, 1975) or, in cases where it was directly

sampled on a semi-quantitative scale, (v) an ordi-
nal distribution (Guisan et al., 1998; Guisan and
Harrell, 2000; Guisan, in press2000), rather than
the norma! distribution ¥mplying the use of LS
regression. Often, log-transforming the response
variable only solves such situations unsatisfacto-
rily (Vincent and Haworth, 1983); it is more ap-
propriate to use maximum-lkelihood (ML)
estimation to fit the model, as this technique can
deal with any paramettic distribution. Thus, if
abundance originates for instance from counts of
individuals, one would preferably use generalized
lingar models (GLM; ML-based) with a Poisson
or a negative-binomiat distribution (Vincent and
Haworth, 1983; Nicholls, 1989), rather than 15
regression applied to a log-transformation of the
response variable (log-linear modefs)®. Table 1
provides an overview of examples of response
variables and their corresponding  statistical
models.

I necessary, the appropriateness of a statistical
model can be checked by a seres of tests (e.g.
Marshall et al., 1995 in the case of LS repression)
or graphical methods (e.g. diagnostic plots). A
quantile—quantile plot {QQ-plot) of regression
residuals can be used to check whether the as-
sumption about the distribution of errors holds.
Similarly, a plot of standardized residuals against
fitted values can also help to identify unsxpected
paiterns in the deviance (i.e. variance for GLMs).
In such a case, one solution is to reconsider the
definition of the deviance in the model®. With
ordinal regression models, partial residual plots
can be used to check the ordinality of the re-
sponse variable y apainst each explanatory vari-
able x, (Guisan and Harrell, 2000).

The formulation of a theoretically appropriate
maodel may fail to provide satisfying results be-

#The use of a binomial GLM with logistic link to predict
P fat of piant cc ities {e.g. Zimmermann and
Kienast, 1999}, of ptant species {Lischke ¢t al., 1998; Franklin,
1998), or the use of a proportional odds (PO) regression model
to predict ordinal abundance (Guisan et al.,, 1998; Guisan and
Harrelt, 2000; Guisan, in press2000) are other examples of
approptiate model formuiations.

? Using the e.g, "quasi’ family in the s-PLUS statistical soft~
ware {see Guisan ¢t al., 1999).
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cause (i) the data themselves are not good
enough, (ii) the resolution of the spatial scale is
not appropriate, or (i) the sampling design was
not intended for this purpose. In some cases, the
model predictions can be greatly improved by
applying a particular category of statistical al-
gorithms, As an example, the use of more empiri-
cally based techniques, such as generalized
additive models (GAM) instead of LS or GLM,
proved to be more sztisfying in some studies {e.g.
Yee and Mitchell, 1991).

In the following sections, we discuss the main
statistical approaches (to modeling) grouped into
seven categories (see Table 1): Multiple regression
and its peneralized forms, Classification tech-
niques, EBnvironmental envelopes, Ordination
techniques, Bayesian approaches, Neuwral net-
works and a seventh category including other
potential approaches or approaches involving sev-
eral methods (mixed approach).

4.1, Generalized regressions

Regression relates a response variable to a sin-
gle (simple regression) or a combination (multiple
regression) of environmental predictors (explana-
tory variables). The predictors can be the environ-
mental variables themselves o1, in order to
prevent multicollinearity in the data, orthogonal-
ized components derived from the environmental
variables through multivariate analysis (e.g. par-
tial least square (PLS), Nilsson et al, 1994;
Heikkinen, 1996; Birks, 1996, principal compo-
nent regression (PCR), Brown et al, 1993;
Sactersdal and Birks, 1997). One possible multi-
collinearity diagnestic is the variance inflation
factor analysis {VIF; Montgomery and Peck,
1982). It should be preferred to analyze pairwise
correlation between predictors, as near linear de-
pendencies may involve more than {wo predictors.
The classical LS regression approach is theorsti-
cally valid only when the response variable is
normally distributed and the variance does not
change as a function of the mean (thomoscedastic-
ity}. GLMs constitute a more flexible family of
regression models, which allow other distributions
for the response variable and non-constant vari-
ance functions to be modeled, In GLMs, the

combination of predictors, the linear predictor
(LP), is related to the mean of the response vari-
able through a link funetion. Using such link
functions allows () transformation to linearity,
and (iiy the predictions to be maintained within
the range of coherent values for the response
variable. By doing so, GLMs can handle distribu-
tions such as the Gaussian, Poisson, Binomial, or
Gamma — with respective link functions set e.g.
to identity, logarithm, logit and inverse. Contrary
to LS-regressions, that could predict biologically
unfeasible values (e.g. probabilities higher than
100% or negative values; see Guisan, in press),
GLM models yield predictions within the limits of
observed values {e.g. presence/absence [1/0] and
probability values in between these extremes)'®.

If the response is not in linear relationship with
a predictor, a transformed term of the latter can
be included in the model. A regression modet
including higher order terms is called polynomial
regression. Second order polynomial repressions
simulate unimodal symmetric respenses {e.g. Fig.
6a), whereas third order or higher terms allow
simulating skewed and bimodal responses, or even
a combination of both. Other transformation
functions (also called parametric smoothers; see
Oksanen, 1997} to simulate more specific response
shapes include: (i) B-functions {Austin et al,
1994}, (ii) hierarchical set of models (Huisman et
al,, 19893), or (iii) a set of ‘n-transformed’ func.
tions (Usé-Doménech et al., 1997).

Alternative regression techniques to relate the
distribution of biological entities to environmental
gradients are based on non-parametric smoothing
functions of predictors (Fig. 6b)''. They include

¥ A Gaussian GLM with identity link is equivalent to a 1.8
regression. Binomial GLMs with logit link are commonly used
in distribution modeling wnder the name of logit regression.
The latter also constitute the core of ordinat regression models
(Guisan snd Harrell, 2000) and polychotomous regression
models (Davis and Goetz, 1990),

* Thus 1ising néw guestions such as! ‘is a skewed response
curve best integrated in a model by a parametric polynomial
(e.g. Ferrer-Castin et al., 1995), a Beta-function: {e.g. Austin et
al,, 1994), a non-linear function (e.g. from a i hical set of
functions; Huisman #1 al,, 1993} or a smoathed fuaction (2.8,
Yee and Mitchell, 194)7
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Fig. 6. Examples of response curves for different statistical approaches used to moedel distribution of plants and vegetation. (a)
Generalized linear model with second order polynomial terms; (b) generalized additive model with smoothed spline functions; (¢)
<classification tree; {d) environmental envelope of the BIOCLIM type; (e) canonical comrespondence analysis; (f) Bayesian modeling
according to Aspinall (1992); p, = posterior probability of presence of the moxdeled species, p,, = a priori probability of presence,
Poo = a priori probability of absence, p., = product of conditional probability of presence of the various predictor classes,
P.a = product of conditional probability of absence of the various predictor classes.

runming means, locally weighted regression, or
tocally weighted density functions (Venables and
Ripley, 1994). GAMs are commonly used to im-
plement non-parametric smoothers in regression
models {Yee and Mitchell, 1991; Brown, 1994;
Austin and Meyers, 1996; Bio et al, 1998
Franklin, 1998; Lehmann, 1998; Leathwick,
1998)"2, This technique applies smoothers inde-

2 GAMs are sometimes used in an exploratory way, to
identify the most probable shape of rasponse curves that are
then best fitted with a GLM {eg. Brown, 1954; Fraoklin,
1998), but can also be used directly to fic the final model {e.z.
Lehmann, £998; Leathwick, 1998),

pendently to each predictor and additively caleu-
lates the component response. Altemnatively,
multidimensional smoothers can be applied
(Huntley et al, 1989, 1995), the drawbacks of
which are discussed by Friedman and Stuetzle
(1981) and Yee and Mitchell (1991).

Furthermore, regression medels can be im-
proved by incorporating additional information
on  ecological processes such as  dispersal
or connectivity. An example is the recent imple-
mentation of autocorrelative functions in a logis-
tic GLM {Augustin et al. 1996; Preisler et al.,
1997) as previously suggested by Malanson
(1985),
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4.2, Classificarion techniques

The category of classification encompasses a
broad range of techniques. It includes techniques
such as classification (qualitative response; Fig.
6c) and regression (quantitative tesponse) trees
(CART; Breiman et al,, 1984; e.g. in Moore et al,,
1991; Lees and Ritman, 1991; Franklin, 1998;
Franklin et ak, 2000)"*, rule-based classification
{e.g. Twery et al, 1991, Lenihan and Neilson,
1993) and maximum-likelihood dassification
{MLC; e.n. Franklin and Wilson, £991). Within
some GIS software (ArcInfo, Imagine, GRASS,
Ilwis, Idrisi), the latter is generally called ‘super-
vised classification’ when it relies on a training
data set, and ‘unsupervised classification’ when no
training data set is required. We found no direct
examples of the application of linear machines to
predict plant or animal distribution, i.e., machine
fearning multivariate or hybrid decision trees re-
fated to CART (Brodley and Utgoff, 1995). How-
ever, examples of their vse to derive land cover
from satellite scenes do exist (J. Franklin, per-
sonal communication). All these techniques assign
a class of the binary (Fig. 6¢) or multinomial
response variable to each combination of (nomi-
nal or continuous) environmental prediciors.

CART, decision tree, and other rule-based clas-
sifications are sometimes placed within artificial
intelligence (AI) techniques, although not all of
these are based on classification techniques {c.g.
neural networks; Fitzgerald and Lees, 1992),
Some expert systems or decision-tree classifiers
are built from interrelating simple rules deduced
from previous understanding of the phenomena to
be modeled (e.g. from literature, laboratory exper-
iments, expert knowledge). In a more empirical
way, algorithms such as CART allow the rufes to
be induced directly from the observations (Lees
and Ritman, 1991).

4.3, Environmental envelopes

Until recently, many large-scale vegetation or
species models were based on environmental en-

4 comparison betweén classification trees and GLM/

GAM can be found in Franklin (1998).

velope techniques (e.g. Holdridge, 1967, Box,
1981; Busby, 1991; Carpenter et al,, 1993; Shao
and Halpin, 1993). Busby (1986, 199!) developed
the BIOCLIM model - a fitted, species-specific,
p-dimensional environmental envelope {Boxcar) —
to model plant species distribution in Australia,
using one-by-one degree latitude—lengitude grid
cells. ‘This approach is based on calculating a
minimal rectilinear envelope in a multi-dimen-
sional climatic space (see Fig. 6d for a two-dimen-
sional example), Holdridge (1967) applied the
same approach to ecosystems, and Box (1981) to
plant functional types.

In an attempt to enclose record sites in the
environmental space more tightly than by the
BIOCLIM rectilinear envelope, Walker and
Cocks (1991) developed the HABITAT model
using convex polytope envelopes (convex hulfl).
Interestingly, both models give very similar results
although they differ in their classification proce-
dure, A rectilinear envetope can be defined from a
very simple classification tree as well (only one
dichotomy per predictor), whereas the more com-
plex polytope envelope would need a more de-
taited tree including more terminal nodes, The
DOMAIN model, developed by Carpenter et al.
(1993), is more complex. ks approach is not that
of classification trees; instead, it is based on a
point-to-point similarity metric (measure of multi-
variate distances) and has proved to be more
suitable for applications where available records
are limited.

Prentice et al. (1992) developed a more mecha-
nistic version of the environmental envelope
model family by fitting only the lower lmit of
direct and resource gradients in order to predict
the predominant plant functional types on a
global scale. Thus, these limits represent the mini-
mum requirement for plant growth. Upper limits
for functional types along environmental gradi-
ents are assumed to be caused by competition
rather than by intolerance or environmental con-
straints. Consequently, the functional types are
ranked by their ability to dominate, and a func-

4 Quantitative comparisons of environmentat envelope and
classification tree approaches can be found in Walker and
Cocks {1991) or Skidmore ¢t al. {I995).
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tional type is replaced automatically by a more
competitive type, once the latter is simulated.

4.4, Ordination techniques

Most models that use ordination techniques to
predict the distribution of species or communities
are based on canonical correspondence analysis
(CCA; see Hill, 1991: Birks, 1996; Gottfried et al,,
1998, Ohmann and Spiess, 1998; Guisan et al.,
1999)'. In this direct gradient analysis the princi-
pal ordination axes are constrained to be a linear
combination of environmental descriptors (ter
Braak, 1988). The method is based on reciprocal
averaging of species and site scores (Hill, 1973).
Thus, the assumed distribution of species is Gaus-
sian (Fig, 6e), with an upper and a lower limit of
occurrence and an optimum along geadients. This
method is appropriate for data sets with many
zeros (i.e. absences)!. Although the method relies
on several postulates {e.z. Gaussian response
curves, species having equal ecological tolerance
and equal maxima along canenical axes, with the
position of the modes distributed wniformly along
a much larger range than species tolerances) that
may theoretically fnvatidate its use in many situa-
tions, ter Braak {1983) argues that the method is
still robust when such postulates are violated.

Redandancy analysis (RDA) — the canonical
counterpart of the principal component analysis
(PCA) — is less frequently used to simulate envi-
ronmentally dependent distribution of communi-
ties and taxa. The method is similar to
LS-regression with linear terms only. However,
the deviation of the residuals is calculated perpen-
dicular to the fitted axes, since there is no inde-
pendent gradient in ordination. Thus, the
undertying response model is a linear or
monotonic distribufion of species along environ-
mental gradients, which litnits the applicability of
this method to short {truncated) environmental
gradients onty (Jongman et al., 1995; ter Braak,

13 A compaison between CCA and GLM modeling is given
in Guisan et al. (1399).

'® Yet, the CCA-approach has mainly been used to predict
presence—absence of species at spatial locations.

1988}, Hence, the approach is of limited use on
the scale of landscape modeling, where large gra-
dients are usually analyzed.

4.5, Buyesian approach

Models based on Bayesian statistics combine a
priori probabilities of observing species (e.g. Skid-
more, 1989; Aspinall, 1992; Aspinall and Veitch,
1993} or communities (e.g. Fischer, [990;
Brzeziecki et al,, 1993) with their probabilities of
oceurrence conditional to the value {or class of
values) of each environmental predictor (Fig. 6f).
Conditional probabilities p(yfx,} can be for in-
stance the relative frequencies of species oceur-
rence  within discrete classes of a nominal
predictor. A priori probabilities can be based on
previous results or literature. This results in an a.
posteriori predicted probabitity of the modeled
entity at a given site with known environmental
attributes. In vegetation mapping, a posteriori
probabilities are calealated for each vegetation
unit and the unit with the highest probability is
predicted at every candidate site (Fischer, 1990;
Brzeziecki et al., 1993).

4.6. Neural networks

The recourse to amificial neural networks
{ANN) as used by Fitzgerald and Lees (1992,
1994a,b}, Civeo (1993), Tan and Smeins (1994),
Chen ¢t al. (1995), Lees (1996), Lek et al. (1996)
or Manel et al. (1999} is a promising area of
predictive habitat distribution modeling. How-
ever, most published applications of ANN in ecol-
ogy are concerned with the field of remote sensing
(see Fitzgerald and Lees, 1992) and {non-spatial)
predictive assessment of environmental changes
(see Spitz and Lek, 1999, Very few examples exist
of ANN being used to predict the spatial distribu-
tien of species or communities using biophysical
descriptors. Fitzgerald and Lees {1992) had re-
course to back-propagation neural network to
predict the distribution of nine land-use/floristic
classes from a mix of remote-sensing (LANDSAT
TM bands 2, 4, 7, topographic {slevation, aspect,
slope, catchment) and geological data. They ob-
tained results as good as those using a classifica-
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tion tree applied to the same data (e.g. Lees and
Ritman, 1991; Lees, 1996), Lek et al. (1996)
showed that neural network models are more
powerful than multiple regression models when
modeling nonlinear relationships. The full classifi-
cation procedure in the case of neural network is
a complex non-parametric process that is some-
times seem as a ‘black art’, even by computer
scientists (Caudill, 1991). Detailed discussion of
the method is the e.g. provided by Hepner et al.
(1990) or Benediktsson et al. {1991).

4.7, Other approaches

Orher existing techniques are not listed in Table
I. Simple models can be developed directly within
a GIS, using overlays of environmental variables,
measures of variation, measures of similarity and
final rules for combining single probabilities. An
example is given in Martinez-Taberner et al.
(1992). For each cell of the DEM and for each
environmental variable, a modified Jaccard index
is used to measure the overlap between the degree
of seasonal variation and the environmental toler-
ance of each species. These values are then consid-
ered to be probabilities of occurrence of species as
a function of a single environmental predictor.
Finally, to calculate an overall probability of oc-
currence, all predictors are combined using a peo-
metric mean'”.

Examples of distribution modeling exist that
have recourse to diseriminant function analysis
(DFA; e.g. Frank, 1983; Lowell, 1991; Corsi et
al., 1999). When modeling vegetation units, indi-
vidual diseiminant functions are produced for
each unit, from which a discriminant score is
calculated. Further assipnment of any candidate
site to one of the unit is based on the highest
calculated score. This approach relies on similar
assumptions as those used for least square regres-

17 Additional examples of boolean approaches {overiay
rules) can be found in Turner and Baumer (1984), Franklin et
al. {1986), Scepan et al. (1987), Cibula and Nyquist (1987),
Hodgson ¢t al, {1988), Mead et al. (1988), Shaw and Atkinson
(1988), Agee <t al, (1989), Stoms et al. {1990), Breininger et al.
(1981), Bagby and Brian {1992), Chang et al. (1992), Schuster
(19%4), or Herr and Queen {1993).

sion (independence of predictors, comstant vari-
anee) except that here, the data for each unit need
to be drawn from a multivariate normal popula-
tion (Huberty, 1994). Interestingly, using a GLM
with binomial distribution for a binary response
variable (i.e. the logistic regression) can be consid-
ered a more flexible way to run a discriminani
analysis.

The ecological miche-factor analysis (ENEFA)
was first suggested by Perrdn (1984), developed
later by Hausser (1995) and recently implemented
in the BIOMAPPER package (Hirzel et al., 20000, It
differs from CCA or RDA, in the sense that it
considers only one species at a time. Like the
envirotitnental envelope appreach, it presents the
advantage of requiring only presence data, a fre-
quent situation in the case of animal observations
where absences are difficult to assess in the field.
Using a marginality index and up to thsee toler-
ance indices, ENFA situates the species—environ-
mental envelope within the multidimensional
environmental envelope that is defined by consid-
ering all mapping units within the study area.

With the MONOMAX approach (Bayes and
Mackey, 1991; Mackey, 1993), a suite of al-
gorithms fits a monotonic maximum-likelihood
function  through iterative processes (which
Mackey calls ‘dynamic programming’). One
severe drawback of this method is that the proba-
bitity of a response variable can be determined
from a maximum of two predictor variables at a
time, In turn, a clear advantage of such non-para-
metric method (also called distribution-free
method) is that no assumptions about the distri-
bution of the data or the residuals nor about their
variance is needed, which makes such a tool par-
ticularly suitable for exploratory anabyses
(Mackey, 1993).

5. Model calibration

This step resukts in the adjustment of the math-
ematical model that was selected for the specific
data set at hand. Rykiel (1996) defines calibration
as “the estimation and adjustment of medel
parameters and constants to improve the agree-
ment between model output and a data set”.
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Although we agree with this definition, we would
like to broaden it to encompass the more global
phase of model construction, which includes the
selection of explanatory variable.

To enhanee the accuracy and predictive power of
a modet, the number of explanatory variables used
must be reduced to a reasonable number (Harrell
et al., 1996). Thus, one of the most difficult tasks
is to decide which explanatory variables, or combi-
nation of variables, should enter the model. Esti-
mating their coefficients, once they are selecied, is
usually a straightforward task,

The selection of predictors can be made arbitrar-
ily (which we do not recommend), automatically
(e.g. by stepwise procedures in LS regression,
GLMs, and CCA), by following physiological
principles, or by following shrinkage rules (Harrell
et al., 1996, 1998). The latter approach seems to be
promising ir: the case of main effect GLM models
(i.e.,, models without interaction terms). Overall,
Harrell et al, (1996) suggest than no more than
m /10 predictors should be inctuded in the final
model, where m is the total nurnber of observations
or the mumber of observations in the least repre-
sented category in the case of a binary response.

By predictors, we also mean all their possible
transformations such as polynomial terms, f-func-
tions (Austin et al, 1994), smoothed empirical
functions (GAMSs; Yee and Mitchell, 1991), or the
use of significant ordination axes (Franklin et al.,
1995) as in orthogonalized regressions (e.g. Heikki-
nen, 1996). In the latter case, however, the biolog-
ical interpretation of such artificial components as
well as the link to a conceptual model might be
difficult. Clearly, the selection of a set of direct and
resource gradients (Austin, 1980, 1985) for calibrat-
ing a model is particularly promising if ecological
significance and interpretability are to be optimized
(Prentice ct al., 1992).

Variable transformation is closely bound to the
prmary identification of species’ response curves to
environmental gradients (see first section). Once
their shape is approximated (see e.g. Huisman etal.,
1993; Austin and Gaywood, 1994; Ausiin et al,
1994; Bio et al., 1998), the statistical model at-
tempts to reproduce and formalize this shape
(Austin, 1987). As ane.g. Brown (1994} or Franklin
{1998} used non-parametric GAMs to explore the

response of species to the environmental predictors
and then used GLMs to reproduce the identified
shapes with adequate parametric terms in the
model.

Particular problems arise with skewed responses,
as their simulation in LS or GLMs is not gasy.
Third order and higher polynomials can simulate
a skewness in the responses, but they tend to reveal
spuricus and biologically unfeasible response
shapes that are more difficult to interpret (Austin
et al., 1990; Hastie and Tibshirani, 1987; Huisman
et al,, 1993; Austin et al., 1994; Bio ot al,, 1998}.
This is specifically true outside the range of values
used for calibrating the model (e.g. outside the
study area, for evaluating chimate change impacts
on plant distribution; see Guisan, 1997). Oksanen
(1997) concludes that B-functions (Austin et al.,
1994) are not appropriate in this case, and that
using Huisman’s approach of hierarchical models
(Tnisman et al., 1993) is a preferable alternative,
although no clear explanation is given om how to
implement such non linear models within, for
example, a GLM. Besides, choosing appropriate
initia} values for the estimation of parameters in
non-linear medels might also constitute an addi-
tional limitation to their common use in further
modeling studies (Huisman, personal communica-
tion).

Parameter estimation is an objective mathemat-
ical opesation described in mest statistical texi-
books and available in any statistical package (SAs,
S-PLUS, SPSS, SYSTAT, etc.). The fit of most models
is characterized by a measure of the variance
reduction {or deviance reduction in the case of
maximum-likelihood  estimation (MLE) tech-
niques). In GLMs, the model is optimized through
deviance reduction, which can easily be converted
into an estimated D7 — the equivalent to R%in 1.8
models — by the following formula:

D? = (Null deviance ~ Residual deviance)
[Null deviance, n

where the null deviance is the deviance of the mode!
with the intercept onky, and the residual deviance
is the deviance that remains unexplained by the
model after all final variables have been included,
A perfect model has no residual devi-
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ance and its D? (akes the value E. In the case of
LS repression, Weisberg (1980) and Nagelkerke
(1991) argue that such a measure is not represen-
tative of the real fit, anless the mumber of obser-
vations n and the number of predictors p in the
model are taken into account (ie. weighting by
the residual degrees of freedom). For this pur-
pose, Weisherg (1980) suggests a new measure
that is commonly called the adjusted R2 It can be
defined similarly for GLMs as

adjusted D*=1—{(n— D)/(r—p x[1 —D7,
2)

where D replaces R in Weisberg’s original for-
mula. The value of the adjusted D? increases with
an increasing mumber of observations (1) or a
decreasing number of parameters (p) in the
model,

The adjusted D? — or R? — is an ideal measure
1o compare models that include different combi-
nations of variables and interaction terms. Gener-
ally, the mode] for which the deviance reduction is
maximal is considered as the best, and further
used for prediction purposes. During the variable
selection procedure, the deviance reduction associ-
ated with each variable is tested for significance at
a given confidence Jevel (usually 0.05). The test
depends on the method used for estimating the
coefficients and the related variance or deviance
distribution. For GLMs, McCullagh and Nelder
(1989, p. 36) stated: “Once we depart from the
Normal-theory linear model we generally lack an
exact theery for the distribution of the deviance
[...] Usually we rely on the y? approximation for
differences between deviances”, Additionally, a
Student ¢-test, using the standard error associated
with the estimated model coefficients, is necessary
to check whether the coefficients differ signifi-
cantly fror zero.

In tree-based technigues the model will attempt
to predict the data exactly, so that no fit needs to
be characterized and the evaluation of the model
may take place immediately after the model] cali-
bration. With classification and regression trees
(CART) this generally results in over-fitted trees
(Chambers and Hastie, 1993) with almost as
many terminal nodes as there are observations.
Hence, the model is not parsimonious and no

reduction in complexity has been achieved. Prun-
ing -~ which is cutting the tree at a certain com-
plexity level to limit the number of terminal nodes
- combined with cross-validation (CV), can be
used to cut the tree down to a more ‘optimal’
number of terminal nodes (Breiman et al.,, 1984;
Chambers and Hastie, 1993; see Franklin et al.,
2000 for an application). However, if more than
one observation is left out at a time, the result of
such optimized pruning can be subject to change
from one run to the other, since it relies on a
random partitioning of the traming data set. In
this case, we recommend replicating the procedure
and choosing the most frequent or average num-
ber of terminal nodes.

Walker and Cocks (1991) describe one way to
calibrate environmental envelopes. Instead of using
the same set of envirommental parameters for all
species (as in BIOCLIM), they propose the selec-
tion of a subset using the CART algorithm (Brei-
man ¢t al., 1984). This subset of prediciors is then
used to define the multidimensional envelope that
best encloses the occurrence of the species. Their
HABITAT model uses a refined set of habitat
decision rules which divide the global envelope
into sub-envelopes of varying sizes in an optimal
way (Walker and Cocks, 1991}). The proportion of
species’ occurrence over the total number of ob-
servations in each sub-envelope is now used lin-
early as & measure of degree of membership (not
& probabilistic concept; see Zadeh, 1965) of each
new site to each sub-envelope of the species.
Ancther approach for calibrating an environmen-
tal envelope is proposed by Carpenter et al.
(1993). Their DOMAIN model is based on a
point-to-point similarity metric (Gower, 1971) be-
tween a candidate site and the most similar record
sit¢ in environmental space. Again, the predic-
tions are not probabilistic, but an expression of
the depree of classification confidence,

In constrained ordination methods (also called
‘direct gradient analysis’, or ‘direct ordination”)
like CCA, the model calibration is very similar to
linear regression, except that here the goodness-
of-fit criterion is to “minimize the ratic of the
mean within-species sum-of-squaies of the vari-
ance to the overall sum of squares” (Bill, 1991).
As in regressions, explanatory variables can be
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selected stepwise. Posterior to the ordination,
each axis can be tested for significance through
Monte Carlo permutations, A subset of environ-
mental predictors can also be defined as covari-
ables, which aflows the removal of their effect (ie.
‘partial out’) from the ordination of the remaining
set of explanatory variables (Borcard et al., 1992).
This is especially vseful in cases where the effects
of particular variables are to be singled out from
the background variation imposed by other vari-
ables (ter Braak, 1988). This is achieved in partial
canonical ordination, a method that was first
applied by Borcard et al. (1992) and by Borcard
and Legendre (1994) to detect hidden spatial gra-
dients that are stitl unexplained by present ecolog-
ical gradients. Finally, variables can be dectared
as ‘passive’, which means that their vector is
plotted with other environmental variables in the
resulting ordinatien Bi- or tri-plot, but they are
not actually used with other predictors to cakeu-
late the linear combination that best explains the
system of ordination axes.

An overall measure of the CCA fit i3 given both
by the trace (or total inertia) of the underlying
correspondence anatysis (CA) and by the propor-
tion of variance in the species’ data that is ex-
plained by each canonical axis, The trace is the
total variance in the species data (i.e. the sum of
all eigenvalees), It is measured by the x* of the
sample-by-species table (Greenacre, 1984) divided
by N, the table’s grand total (see ter Braak and
Smilauer, 1998). The fit of a particular species by
k CCA axes is given cumulatively and expressed
as a fraction of the variance of a species, The
species variance is calculated as the y? of the
sample-by-species  table divided by species’
column total (for more details, see Greenacre,
1984, or ter Braak and Smilauver, 1998). The re-
ported fits are the regression sums of squares of
the weighted regression of the data for the species,
expressed as a fraction of the total sum of squares
for the species (ie. in a simitar way as D? in
GLMs), on the I - k ordination axes. The overall
percentage of explained vatiance is obtained by
adding all axes. These measures of the fit are
discussed in more detail in ter Braak and Smilauer
(1998). In addition, the species—environment cor-
relation can be measured for each axis as the

correlation of the respective multidimensional co-
ordinates of the species occurrences in both the
species and the envirommnental space. The latter
results from multiple regression predictions of the
species coordinates om the environmental vari-
ables. A high species—environment correlation
does not necessarily mean that a considerable
amount of the species data is explained by the
environmental variables (ter Braak, 1988), and
thus it is not a good measure of the fit (see also
Guisan et al., 199%),

Calibrating & Bayesian model to predict distri-
bution of species or vegetation units is equivalent
to calculating the multivariate state conditional
probability of each c¢onsidered entity, given the
values of the environmental predictors (Aspinall,
1992; Brzeziecki et al., 1993), The significance of
each habitat attribute for discriminating or not
discriminating the occurrence of the modeled en-
tity can be assessed through x2 frequency analysis
(Aspinall, 1992}, The resulting y scores can be
used to decide which predictor should be included
in the model. If prior information is available, e.g.
about the overall frequency of the modeled enti-
ties in the study area, it can be set as the prior
probabilities. If no prior information is available,
the prior probabilities can be defined as equal and
assigned an arbitrary value. Fischer (1993) used
prior probabilities using data from a systernatic
sampling, whereas Brzeziecki et al. {1993) did not
distinguish prior probabilities because the training
data set lacked any statistical sampling procedure.
In Aspinali (1992), prior probabilities are esti-
mates of the probabilities of presence and ab-
sence. Both can be set to 0.5 if the assumption of
equal probability for presence and absence is cho-
sen. As an alternative, they can be set according
1o the proportion of all sites in which the entity is
present (Aspinall, 1992). Qualitative predictors
can be treated as in parallelepiped (PPD} classifi-
cation (see Binz and Wildi, [988), by assigning
probability 1 if a vegetation type occurs at least
once (or another defined threshold) within the
qualitative class, and 0 if it never occurs within
the respective class (Brzeziecki et al., 1993). These
values are then multiplied by the probabilities
originating from the Bayes formmula, Thus, a zero
value for any of the gualitative predictors will set
the overall probability to zero.
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Discriminant functions are often calibrated us-
ing Wilk’s 4 goodness-of-fit statistic, which pro-
vides a similar measure of overall model fit as the
R? in muitiple regression, It is distributed as an
F-ratio when the number of units modeled is less
than or equal to 4, or when there are only two
predictors (Lowell, 1991; Huberty, £994),

During model calibration, the individual influ-
ences of each observation on the model-fitting can
usually be evaluated graphically (e.g. in LS,
GLMs). In regression analyses, such screening
allows the identification of outliers and leverage
points, the removal of which (supported by bio-
logical reasons) may contribute to improve the fit
of the model. In LS regressions, they are derived
from the residual caleulations (in the case of
outliers) and from the hat matrix (in the case of
leverage points). Another measure of influence is
based on the Jack-knife methods (Efron and Tib-
shirani, 1993), It is performed by fitting the model
with n observations but one, leaving out succes-
sively one observation at a time, This procedure
leads to the calculation of the empirical influence
values & for each observation. These values can be
plotted as a function of the observation mumber
to detect possible outlying observations. A similar
approach can be used for cross-validating the
moedel when no held-back data are available (see
Section 7).

6. Muodel predictions

Once the plant species” or community’s multiple
vesponse (i.e. its ecological profile} is derived by
any of the modeling techniques previously de-
scribed, its potential distribution within the mod-
eled area can be predicted. Modeling potential
distribution of plant species or communities is
equivalent to modeling their potential habitat
(Schuster, 1994: sensu Whittaker et al, 1973),
which led some authors to call such maps ‘poten-
tial habitat distribution maps’ (PHDMs). Poten-
tial distribution maps can be defined in several
ways, a3 cariographic representations of:

1. the probability of occurrence (e.g. from logistic

GLMs; Fig. 7a);

2. the most probable abundance (e.g. from ordinal
GLM; Fig. 7h);

3. the predicted occurrence based on non-proba-
bilistic metrics (e.g. from CCA; Fig. 7c);

4, the most probable entity {e.g. {rom hierarchical
considerations, Fig. 7d).

Although GIS are widely used tools in all types
of spatially explicit studies, they still fack impor-
tant statistical procedures for predictive purposes.
This is a serious flaw because not all statistically
derived models are similarfy easy to implement in
a GIS environment.

Logistic regression and supervised classification
techniques are available in most GIS packages but
they remain largely insufficient when applying
most of the previously cited methodological steps
(e.g. no stepwise selection procedure for logistic
regression is available in ArcInfo). Moreover,
they do not provide graphical checking of the
model fitting (e.g. regression diagnostics), and the
final evaluation of the model predictions cannot
be made immediately. Tn tum, models cannot be
easily calibrated outside of the GIS, since most
statistical packages cannot read GIS-maps di-
rectly, and the interchange fles are generally huge
in size.

GLM models are easy to inplement in a GIS,
as far as the inverse of their link function can be
calculated. Each model is generated by simply
multiplying each regression coefficient with its
related predictor variable. The results of the cal-
culations are obtained on the scale of the LP so
that the inverse link transformation is necessary
to obtain probability values on the seale of the
original response variable (Guisan et al., 1998,
1999). With binomial GLM, for instance, the
inverse logistic transformation is

P} =exp(LPY(1 + exp(LP)), ®

where LP is the linear predictor fitted by logistic
regression. Such transformation is necessary to
obtain probability values between 0 and 1. Ordi-
nat GLMs are implemented on the same basis in
a GIS (see Guisan and Harrell, 2000).
Implementing classification models in a GIS
depends on the specific approach chosen. Super-
vised dassifieation techniques (using an MLC al-
gorithm) are available in most GIS. Classification
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Fig. 7. Predicted maps represcoting (2} the probability of oceurrence of a species (Spring Mountains, Nevada; see Guisan et al.,
1599), (b) the distribution of most probable abundance values of a species at each pixet (Belalp area, Swiss Alps; from Guisan, 1997),
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and regression trees can be implemented by using
the CART software (Breiman et al., 1984; CART,
1984) directly linked to a GIS, or by writing a
GIS specific macro to reconstruct the tree by
using conditional statements (e.g. Lagacherie,
1992). However, the latter solution becomes fabo-
rious to implement when trees are complex. Rule-
based classifications are the easiest to implement
in a GIS, as they can be performed through
simple overlay procedures combined with simple
conditional statements or written as simple
MAacros.

Many environmental envelope models are cal-
culated by using specific programs that inchide
the display of final maps. In the HABITAT pro-
gram (Walker and Cocks, 1991), environmental
envelopes (convex polytopes in this case) are im-
plemented (i) through a sweccessive splitting of
variables (as done by the CART software; what
Breiman et al,, 1984 call computer induction) and
(ii) by maximizing a function via iterative pro-
cesses with constraints (what is called finear pro-
gramaning by Breiman et al, 1984). Computer
induction aims at (a) identifying 4 reduced mmm-
ber of parameters for explaining the species’ dis-
tribution, and (b} dividing the environmental
envelope into sub-envelopes with differing proba-
bilities of occurrence of the modeled species.

Linear programming checks if a candidate site
lies inside or outside the envelope. Implementing
predictions from environmentally constrained or-
dinations in a GIS is achieved by calculating the
main axes from lincar combinations of the origi-
nal environmental predictors (using the canonical
coefficients). Bach axis constitutes a new grid
layer in the GIS, and multiple axis layers together
define the new canonical space. This allows for
the position of each candidate grid cell in the
canonical space to be determined and, finally, the
calculation of its Euclidean distance to each spe-

.cies centroid. Distances can be grouped by classes
of standard deviation units and mapped to draw
the potential distribution of each species. Again,
such implementation can be facilitated if the
whole procedure is written as a custorm macro
function (e.g. the CANOGEN macro, an implemen-
tation of CCA models in ArcInfo, written in the
Arc Macro Language; see Guisan et al., 1999),

Bayesian models are implemented in a GIS by
combining the environmental layers within Bayes’
theorem. Estimates of presence/absence (a priori
probabilities) are medified by the conditionat
probabilities of observing the modeled entity at
each site. As an example, Aspinall {1992) imple-
mented the full procedure in a single GIS macre
and Brzeziecki et al. (1993) as a FORTRAN pro-
gram (personal communication).

Models based on discriminant analysis can be
implemented in a GIS in the same manner as
GLMs, by calculating the discriminant function
from the estimated coefficients. However, no in-
verse link function is needed o transform the
predictions back to the scale of the response
variable.

7. Model evaluation

Loghle (1983), Oreskes et al. {1994} and Rykiel
(1996) discuss the use of the term validation when
measuring the adequacy between model predic-
tions and field observations, what is called aecu-
racy dssessment in remote sensing studies. Oreskes
et al. recommend that the term validation be no
longer used for this specific step. Loehle com-
ments that validation generally implies a logical
analysis of medels, which we here refer to as
‘theoretical model formulation’. To analyze the
predictive success of models, we propose to follow
Oreskes et al. (1994) and use the term evaluation.
We believe it to be the most appropriate term, as
the model’s veracity is not called into question.
Models canmot be tested as being true or false, but
for providing good testable hypotheses relevant to
important problems (Levins, 1966), and for the
accurate prediction of biological patterns. Gaug-
ing the accuracy of predictions is directly related
to the estimation of their apparent error rate.
When assessing the predictive power of a statisti-
cal model, Van Houwelingen and Le Cessie (1990)
showed that their model was too optimistic, at
least as regards the three methods they tested. A
better assessment can be obtained by using opti-
mism ¢orrections. The latter can be analytical (see
Van Houwelingen and Le Cessie, 1990) or empiri-
cal (based on CV and bootstrap; see Guisan and
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Harrell, 2000). Furthermore, evaluation is related
to the measure of adequacy, which depends on the
specific purpose of the project, and the domain in
which the model is supposed to be applicabte
{Fieldings and Bell, 1997).

Two main approaches exist for evaluating the
predictive power of a model. The first approach is
to use a single data set to calibrate the model and
then evaluate it by CV (Van Houwelingen and Le
Cessie, 1990; Manel et al., 1999; Franklin et al.
2000), feave-one-out Jack-knife (JK, a special case
of CV; Efron and Tibshirani, 1993, 1993; Manel et
al,, 1999) or bootstrap (Efton and Tibshirani,
1993, 1993; Guisan and Harrell, 2000) techniques.
The second approach is to use two independent
data sets, one for calibrating and another for
evaluating the model (often ¢alled the fraining and
evafuation data sets; e.g. Brzeziecki et al., 1993;
Guisan et al., 1998, 199%; Zimmermann and Kien-
ast, 1999}

Bootstrap, in particular, attempts to correct the
error rate for over-optimism rather than to assess
the adequacy between predictions (i.e. values pre-
dicted at independent sites not used for calibrating
the model} and actual observations. Hence, boot-
strap and other resampling methods can be used
to complement an independent evaluation of the
models. As a first step, bootstrap or CV can be
used to assess the stability of the model. As a
second step — if an independent data set is avail-
able — the quality of medel predictions can be
assessed using appropriate adequacy measures.
Manel et al. (1999) using both evaluation ap-
proaches, demonstrate the need to evaluate predic-
tive habitat distribution models from independent
data, and to use a range of criteria to assess the
medel performance,

7.1. Jack-knife, cross-validation and bootstrap

When using # single data set to calibrate and
evaluate the model (Fig. 1), CV, JK or bootsteap
techniques are appropriate to evaluate the model
and its predictions. This approach should be se-
Iected if the data set is too small to be split into
separate data sets (in which case JK or bootstrap
will be preferred), or if the use of as many obser-
vations as possible for the model calibration is

preferred. In the latter case, the model is not
evaluated outside of its calibration range of appli-
cability and credibility,

Resampling techniques, as e.g. used by Halfon
(1685) in ecotoxicolopy, are very promising but
have rarely been used until now for such applica-
tions. Bootstrap methods allow one to approach
the bias of an estimation by performing multipie
re-sampling (with replacement) within the calibra-
tion data set, and then to remove it to obtain an
unbiased estimate (Efron and Tibshirani, 1993).
The bias is the difference between the parameter
estimate and the true population value, With
GLMs for instance, bias-corrected values of B3, of
the regression coefficients and of intercepts can be
estimated this way (Harrell et al.,, 1996, Guisan
and Harrell, 2600). When the difference between
apparent and bias-corrected values is too high,
called the ‘optimism from overfitting’ (Harrell et
al., 1998), the adequacy of the model should be
seriousty questioned.

7.2, Evaluation from an independens data set

When using two independent sets of data (Fig.
1), the first is used to adjust the model (calibration
data) whereas the second is used to evaluate the
quality of model predictions. When both data sets
result from the splitting of an criginally single data
set, it is called the split-sample approach (Van
Houwelingsn and Le Cessie, 1990). This approach
is unsuitable for small data sets because there are
not emough observations for calibrating and evalu-
ating the model and unsatisfactory predictions
may result. In turn, when data sets are sufficiently
large, the method becomes particularly attractive
because of its simplicity with regard to CV and
bootstrap procedures, This approach is optimal if
two different data sets are available up front,
originating from two distinct sampling strategies,
preferably not mixed in one single statistical anal-
ysis. As an example, the calibration data set could
resuit from a well-designed random-stratified sam-
pling whereas the evaluation data set would result
from a previous observational study. Mixing the
observational data with the stratified data would
diminish the sampling design and thus impair the
fitting of a satisfying model,
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Two types of measure can be used in such a
case. A first approach is to evaluate the success of
the predictions with the same measure of good-
riess-of-fir used for calibrating the model. The
evaiuation procedure will then measure the fit
between predicted and observed values of the
evafuation date ser (and not between fitted and
observed values as in the calibration step). In the
vase of LS regression, this means calculating the
coefficient of determination (R?) between predic-
tioms and real field observations. For other statis-
tical methods (ltke GLM or GAM), however, this
solution may be more difficult to implement, if
more complex estimation algorithis are involved
{e.p. iterative, like ML).

A second approach is to use any discrete mea-
sure of association between predicted and ob-
served valves {e.g. Fieldings and Bell, 1997,
Stehman, 1999; Guisan and Harrell, 2000; see
below). However, il the predictions of a statistical
model are probabilistie, they need to be trams-
formed back to the scale of the real observations.
For binary data, this can be done by truncating
probabilities at a given threshold. Instead of ap-
plying an arbitrary threshold, this step can be
improved by (i) adjusting an optimal threshold
that provides the best agreement between pre-
dicted and observed values of the calibration data
set (Guisan et al., 1998, 1999; Franklin, 1998), or
(it) applying a threshold-independent measure
such as the receiver operating characteristic
{ROC) plot methodology (Fieldings and Bell,
1997; Manek et al., 1999 or Guisan, in press for
examples of its application in ecology). In the first
case, the optimized threshold is used to transform
probabilistic predictions {from the evaluation data
set) back into presencefabsence {for binomial
models; Guisan et al.,, 1999) or into an ordered
scale {for ordinal tnodels; Guisan and Harrell,
2000). For norinal data, the unit with the highest
probability of ooccurrence can be predicted and
compared to real data when evaluating a model
(Brzeziecki et al., 1993; Zimmermann and Kien-
ast, 1999). Final comparisons are best set out in a
contingency table, also called confision matrix in
literature dealing with nominal predictions (such
as vegetation units in remote sensing studies). The
choice of an appropriate measure of association is

dependent upon: (1) the type of the response
variable being modeled (Table 1) and (2} the
study objectives (Fieldings and Belt, 1997; Steh-
man, 1999},

Evaluating the predictions of guantilative re-
sponse variables is the simplest case, for (i} they
are intrinsically threshold-independent and (ii)
they can hardly be weighted (contrary to evaluat-
ing predictions of qualitative or binary variables;
see below). Pearson’s product—moment correla-
tion coefficient can be used if the variable is
normally distributed. Otherwise, a non-parametric
tank correlation coefficient can be used (Kendall's
7 oF Spearman’s p, for instance). The prediction
mean squared error (PMSE; see e.g. Gotway et
al.,, 1996) or the G-value {(Agterberg, 1984; Got-
way et al., 1996) are other measures of prediction
accuracy in the case of a gquantitative tesponse, G,
in particnlar, is given by the formula

o=(1-($ bo—2cor/ § ee-a1))
x 100% ' @

where Z(x,) is the measured (real) value at a given
location: J§, Z{x,} is the predicted value, and Z is
the overall sample mean of the calibration data
set. This measure tests the relative improvement
of the model, simply using the sample mean of the
calibration data set as a model prediction. A value
of 100% indicates a perfect fit, while a value of 0%
describes no significant improvement using the
sample mean alone. Negative values indicate sys-
tematic errors in the predictions (Schloeder, per-
sonal communication}.

For gualitative response variables, it is appro-
priate to compare the predictions to the observa-
tions in a contingency table and to apply an
adequate measure of association for nominal scale
(Agresti, 1990). The resulting contingency tables
are 2 x 2 if presence/absence (binary) data are
modeled, or # % n if habitat or other multinomial
units are modeled (i.e. the confusion matrix cited
zhove). Numerous association measures have
been proposed such as the propertion of area
correctly classified, the percent commission and
omission errors (and the resulting percent confu-
sion error), x (Cohen, 1960; Monserud and Lee-
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mans, 1992; Fitzgerald and Lees, 1994b), ¢ (Ma
and Redmond, 1993), or Foody’s (1992) x. They
all reveal adequate results given the specific mod-
eling context. When the relative seriousness of
possible errers between predicted and observed
units vary, weighting the errors is more appropri-
ate. For instance, the weighted x (Cohen 1968;
Naesset, 1996) is 2 useful extension when a large
number of simulated habitat types with varying
pairwise dissimilarities are evalvated. The use of
{user-defined} cost matrices attributing different
weight to two types of prediction errors (ommis-
ston, commission) can also be appropriate when
models are used e.g. in a biolegical conservation
perspective (Fieldings and Bell, 1997)'%. A similar
approach is discussed by Stehman (1999) under
the terms user’s accuracy or producer’s acewracy
for evaluating thematic maps, where certain pre-
dicted classes have comparatively greater or lesser
imporiance to the project’s objectives.

For semi-quantitative response variables, such
as semi-logarithmic abundance scales (e.g. cover
classes), it is best to compare the predictions and
the observations in a contingency table and subse-
quently apply a measure of association for ordinal
scales (Agresti, 1990}. Examples of such measures
are y (Goodman and Kruskal, 1979), D,, of
Somer, D,, of Kim, D,, of Wilson (Gonzalez and
Nelson, 1996; Guisan and Harrell (2000) for an
application in ecology) or the weighted x {Cohen,
1968; Naesset, 1996},

7.3, Assessing error propagation and spatial
trends in uncertainties

Another important aspect of model evaluation
ts the assessment of (i) error propagation and (i)
the disiribution of uncertainties.

Error propagation, vesulting from the combina-
tion of several heterogeneous data [ayers within a
GIS (e.g. Heuvelink et al., 1989) or from rasteriz-
ing vecior data (e.g. Bregt et al., 1991), can pro-
duce significant npoise that affects the

“Eg if a model is used to design a nature reserve, the
failure to correctly prediet locations of observed presence
{ = omissior} is more ‘costly’ for conservation than would be
the prediction of false presenice ( = commission).

interpretation of results (Lagacherie and Holmes,
1996). Although such assessments do not offer an
evaluaticn of model quality, it may help to trace
the source of error if model predictions are
unsatisfactory.

Aspinall (1992) includes an assessment of un-
certainties in a Bayesian model of species distribu-
tion. He repeatedly applies the procedure of
relative frequency caloulation, using a random
subset of the data for each run (ie. a sort of
bootstrap), to estimate a standard deviation and a
standard error for alf conditional probabilities.

Cartographic representation of errors or uncer-
tainties may help to identify areas where addi-
tional data sampling is needed to improve the
model (Dave Roberts, personal communication)
or where ecological processes not taken into ac-
count in the model may occur, For instance, a
patchy distribution of a significant ecological vari-
able not included in the set of predictors would
produce 2 patchy distribution of high residual
BITOTS.

8. Model credibility and applicability

The interpretation of model accuracy is subjec-
tive. Consequently, Monserud and ILeemans
(1992) propose a scale of terms to express this
judgment based on the evaluation statistics.
Thereafter, the modeled accuracy is classified as
fair if a x value of 0.5 is obtained, and as excellent
if this value lies between 0.85 and 0.99. Such
subjective judgment can also include the spatial
scale and resolution covered by the model. A
model may appear to be satisfying when its pre-
dictions partially or totalty agree with the ob-
served patterns. However, saying that a modet is
‘good’ or ‘bad’ is subject to critics, because it is
implicit in modeling that perfect truth caonot be
attained {Oreskes et al, 1994), Thus, a model
should be discussed ounly in the pre-defined con-
text of its application. Such discussions are partic-
ularly important when models are applied in a
management context, and whent an evaluation is
needed to determine their range of applicability.
This step was recently swmmarized by Rykiel
(1996) under the terms credibility and gualification
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of a model. Using Ryckiel’s definitions, credibility
is based on a subjective confidence level whereas
qualification is related to the model applicability
and lies mainly in “discovering the domain over
which a validated model may propetly be used”.
Both terms converge when a model has been
extensively used and tested, and has become
widely accepted for scientific and management
purposes.

Predictions of static models, even if properly
evaluated, have to be considered with regard to
their potential for application. Decoursey {1992)
divides models into three classes, according to
their potential use: (i} screening, (i) research; and
(iii) planning, monitoring; and assessment. Static
distribution models mostly belong to the first and
second categories. They are fundamentally proba-
bilistic in nature and should remain so. Conse-
quently, their best range of application is for
comparative or screening purposes. Examples of
applications in literature range from management
of rare species (e.p. Miller, 1986; Myatt, 1987;
Carey and Brown, 1995), identification of possible
‘hot spots’ of biodiversity {e.g. Heikkinen, 1996},
easlier assessment of potential impact of climate
change on plant species (e.g. Lischke et al., 1998;
Guisan and Theurillat, 2000), community distri-
butions (e.g. Brzeziecki et al., 1995; Kienast et al.,
1995, 1996} or species richness (Kienast ot al.,
1998; Guisan and Theurillat, 2000), or combina-
tions of these applications (e.g. Carey and Brown,
£995).

As discussed previously, the transfer of the
predictive ability of the models into a climaticalty
changeable future environment may be seriously
questioned. However, while dynamically-mecha-
nistic models are “more likely to provide more
accurate predictions of system behavior under a
wide range of conditions” (Jones, 1992), their
present relizbility and applicability to large geo-
praphical areas is still limited (Lischke et al.,
1968). Static comparative models can thus be
considered an appropriate alternative for obtain-
ing rapid primary impact assessments over large
areas (e.g. Brzeziecki et al., 1995; Franklin, 1995;
Guisan et al, 1995 Kienast et al, 1995, 1994,
1998; Guisan and Theurillat, 2000).

9. Some research perspectives

When analyzing the literature dealing with
static distribution models, some key topics refated
to their limitations appear repeatedly. Among
these, the most important ones in our opinion are;
‘aceuracy and resolution of input maps’, ‘biotic
interactions’, ‘causality’, ‘evaluation data’, “histor-
ical factors’, ‘response curves’, ‘sampling design’,
‘spatially explicit uncertainty assessment’ and
‘spatial autocorrelation’,

9.1, Accuracy and resohution of input maps

Yet, the generation of large-scale climate maps
has been greatly improved (Hutchinson and
Bischof, 1983; Mitchell, 1991; Daly et al., 1994;
Thornton et al, 1997). However, higher accuracy
and resolution of biophysical Input maps are still
considered the primary requirements for improv-
ing model predictions. This is especially true for
qualitative variables like geology, soil units, or
land-use that can act as powerful ‘filters’ for
primary predictions made with quantitative pre-
dictors if accurately mapped (Fischer, 1994}, The
problem of accuracy becomes even more impor-
tant when models are developed for mountainous
terrain with heterogeneous topography, where
vegetation is distributed in mosaic-like patierns
with sharp transitions from one vegetation type to
another (Brown, 1994; Fischer, 1994; Zimmer-
mann and Kienast, 19923, In this respect, progress
in GIS-medeling and in remote sensing — particu-
larly (rectified) multi-band aerial photographs (as
three-bands infra-red photographs) — could pave
the way for obtaining more accurate information
{moisture, vegetation index, land-use, etc.).

9.2. Biotic interactions

Biotic interactions, and more particularly com-
petition, represent a challenge for the future of
species distribution modeling. This is the key to
making species models meet community models.
A way of integrating biotic interactions into static
distribution models might be the use of integrated
systens of simultaneous regression equations of
GIL.Ms, as already applied to a few econometric

176 A. Guisan, N.E. Zimmermann / Ecological Medelling 135 (2000) 147-186

models (Greene, 1993). The principle of such a
system of simuitaneous regressions (88R) is given
- in a simplified form — in the series of equations:

=, + X8+ Y pyh,
Yo=ay+ X+ Y oy,

Vo= + X8+ Yy &)

where X§, represents the matrix producis for envi-
ronmental predictors and ¥, _,;y represents the
matrix products for all other ¥ responses (but the
ith one). With this approach, each fitted species’
presence or abundance is included as an addi-
tional predictor in all other equations until equi-
librivm js reached in an iterative process. This
approach shares some similarities with the loop
analysis (LA). The basics of LA were initially
proposed by Mason (1954) for compatations of
electrical circwits and were later adapied hy
‘Wright (1968) for analyzing inbreeding systerns,
Levins {1974, 1975, 1977) further developed it for
integrating the simultaneous impact of environ-
ment and co-occurring species on the (qualitative)
individual species’ dynamic behavior. Both LA
and SSR. reguire the modeled system to be at or
near equilibrium.

2.3. Causality

Related to the accuracy of input maps is the
preblem of how to develop more mechanistic
static models, as claimed by several authors {e.g.
Austin et al., 1983; Prentice et al.,, 1992; Ienihan,
1993}, This is particularly necessary if static distri-
bution medels are considered to be the first step
in building more complex spatio-temporal process
models, as suggested by Solomon and Leemans
(1990} and others. To achieve this goal, physiol-
ogy-based parameters, like minimum femperature
during the coldest month or site water balance,
should preferably be used over physiographic pre-
dictors. As noted by Franklin (1995), so far only
a few studies (e.g. Hanson et al,, 1990; Baker et
al., 1991} have investigated this promising area of
plant ecology for use in predictive modeling,
More collaboration with plant ecophysiologists

and dynamic succession modelers is stroagly
encouraged.

9.4. Evaluation date

Models are often evaluated through CV, using
the same data set that was used to parameterize
the model. However, this approach remains weak
in assessing model credibility and applicability.
Spatial models have more serious theoretical Hmi-
tations than dynamic models, but are clearly an
alternative for quickly predicting plant or animal
distribution over large spatial scales. In order to
assess its predictive power along spatial scales, the
performance of a static model should ideally be
tested on independent data. If no equivalent test
data are available, we propose choosing between
two alternatives: (i} to set apart a portion of the
calibration -data set, or (ii} to use other data
sources like vegetation maps to gencrate indepen-
dent test data. The first approach may be imple-
mented simultaneously with re-sampling (for
calibration} a database that originates from obser-
vational stadies. The second approach is more
often used, but runs the risk of introducing new
uneertainties, due to mapping errors, insufficient
map resolution and the translation errors which
can occur when deriving species distribution from
vegetation maps (Brzeziecki et al., 1993; Zimmer-
mann and Kienast, 1999).

9.5, Response curves

This remark is related to techniques that fit
multidimensional response surfaces, which can
(theoretically) be broken down into individualistic
response curves for each explanatory variable.
Ideally, the shape of such individualistic response
cutves should be analyzed systematically before
the variable is included in a multivariate modef.
However, exploring the respomse of each variable
separately may be of Hmited use in a multiple
variable context where interactions between pre-
dictors can modify the shape of the response
curve. A sound alternative is then to use partial
residual diagnostic plots to explore the probable
shape of each predictor, since it takes into ac-
count all other predictors already included in the
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model. An equivalent task is to evaluate whether
parameters shall be fitted parametrically (as in
GLMs) or non-parametrically (as in GAMSs,
CART)"™.

8.6, Historical factors

The influence of historical Fictors on the
present day distribution of organisms - in the
sense of both biogeographers (history of location)
and evolutionary bielogists (history of lineage; see
Brown et al., 1996) — can be a severe limitation to
static distribution modeling. It should thus be
assessed whenever it is possible. (1) History of
place: a plant or animal can be absent from a site
having a high likelihood of presence (i.c. a suit-
able habitat) due to past geological or climatic
events (c.g. placiations) or due to physical barriers
(e.g. high mountains), so that its range never
extended mnto this area. A few pioneer works
recently started analyzing this field (see e.g. Birks,
1996; Leathwick, 1998) by including historical
factors in static models to test their influence on
plant distributions. (2} History of lineage: when
simulating large areas, static modelers are encour-
aged to collaborate with-evolutionary biclogists
and population geneticists to assess the genetic
integrity of a species. Is there gcotypic differentia-
tion within the range of a plant species, which
would require preferably separate model calibra-
tions for the different ecotypes identified?

9.7, Sumpling design

Too many static modeling exercises are still
based on field data from observational studies
lacking a designed sampling strategy. For future
research, we suggest basing field sampling more
systematically on strategies such as the gradsect
method (Austin and Heyligers, 1989, 1991) or a
true random-stratified design (Goedickemeier et

¢ The identification of sampling density, sampling lags, and
data outliers are helpfu! when choosing between parametric
and non-parametric models. Parametric response curves are
somewhat less sensitive to {ags and outliers thar more data-
driven, non-parametric respense curves {e.g. spline, loess),
since the model expects & predefined funetion.

al., 1997; Cherix et al., 1998). Alternatively, in
order to reduce the sampling bizs and to improve
the data quality for further statistical analysis we
proposs the re-sampling of databases containing
data from cbservational studies along environ-
mental gradients (to simulate the gradsect
method) or to collect additional data in the field,
in order to improve an existing sampling with
stratification. A drawback of both altematives is
that the resulting sampling will not truly originate
from a random-stratified design.

9.8, Spatially explicit uncertainty assessmient

Repression diapgnostics and model evaluation
allow the assessment of the overall quality of a
model. However, such statistics do not reveal
details about the spatial distribution of prediction
uncertainties, The tater is very helpful for design-
ing additional field campaigns, or for assessing the
model credibility and applicability more specifi-
cally, We thus propose to map more systemati-
cally not only predicted entities, but also their
associated uncertainties.

8.9, Spatial autocorrelation

Spatially explicit predictive models are gener-
ally built with few or no attention to spatial
processes that drive biogeographical patterns. Re-
gression methods are e.g. applied to infer the
distribution of biotogical entities from environ-
mental variables by considering these observa-
tions to be independent from each other.
Neighborhood relationships between contiguous
geographical observation points are rarely investi-
gated at this stage. Such relationships include for
instance spatial autocorrelation and other features
of spatial variance, which belong to the domain of
spatial statistics {see Cressie, 1993; Cressie and
Ver Hoef, 1993) and were previously seen as
statistical annoyances (JTorne and Schneider,
1995). Nevertheless, patchiness due to factors
other than biophysical drivers has to be accepted
as an ecological reality {e.g. dispersal). Such influ-
ences ¢an be included into distribution models
through autocorretative models (Malanson, 1985;
Augustin et al., 1996). However, assuming or
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measuring spatial autocorrelation in the response
variable implies that observations are spatiatly
dependent and, as a result, great care should be
taken that the number of degrees of freedom used
to test significance of parameters in the mode? has
heen corrected accordingly.

Another category of spatizl models — called
cellular automaton - was proposed in recent years
to account for neighborhood relationships (and
thus spatial correlation) and changing environ-
ments (see ¢.g. Wolfram, 1984; Hogeweg, 1988;
Phipps, 1992; Ruxton, 1996; Ruxton and Saravia,
1998). These models are based upon a number of
cells on a grid. Each cell is assigned one of several
possible states, and inherits its own set of transi-
tion rules to change from one state to another.
These rules are sensitive to the content of the
neighboring cells. Such models were already suc-
cessfully applied in ecology, e.g. to predict the
distribution of plant species in a changing climate
(Carey, 1996) or to sitmulate the migration of
plants along corridors in fragmented landscapes
(van Dorp et al., §997).

Finally, we noticed a lack of comparative pa-
pers {such as Walker and Cocks, [991; Skidmore
et al,, 1996; Manel et al,, 199%) in which more
than two statistical methods are applied to the
same data set. Most published static modeling
studies use only one of the many statistical tech-
niques that may properly be used, and little infor-
mation is avazilable on the respective predictive
capacity of each approach. The debate is usually
restricted to the intrinsic suitability of a particular
method for a given data set. When starting a
static modeling study the choice of an appropriate
statistical method would be much facilitated by
having access to publications of comparative pa-
pers that show the advantages and disadvantages
of using different methods in a particular context.
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